Features

* High-performance, Low-power Atmel®AVR® 8-bit Microcontroller
¢ Advanced RISC Architecture
— 130 Powerful Instructions — Most Single-clock Cycle Execution
— 32 x 8 General Purpose Working Registers
— Fully Static Operation
— Up to 16MIPS Throughput at 16MHz
— On-chip 2-cycle Multiplier
¢ High Endurance Non-volatile Memory segments
— 8Kbytes of In-System Self-programmable Flash program memory
- 512Bytes EEPROM
— 1Kbyte Internal SRAM
— Write/Erase Cycles: 10,000 Flash/100,000 EEPROM
— Data retention: 20 years at 85°C/100 years at 25°C(")
— Optional Boot Code Section with Independent Lock Bits
In-System Programming by On-chip Boot Program
True Read-While-Write Operation
— Programming Lock for Software Security
* Peripheral Features
— Two 8-bit Timer/Counters with Separate Prescaler, one Compare Mode
— One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture
Mode
— Real Time Counter with Separate Oscillator
— Three PWM Channels
— 8-channel ADC in TQFP and QFN/MLF package
Eight Channels 10-bit Accuracy
— 6-channel ADC in PDIP package
Six Channels 10-bit Accuracy
— Byte-oriented Two-wire Serial Interface
— Programmable Serial USART
— Master/Slave SPI Serial Interface
— Programmable Watchdog Timer with Separate On-chip Oscillator
— On-chip Analog Comparator
¢ Special Microcontroller Features
— Power-on Reset and Programmable Brown-out Detection
- Internal Calibrated RC Oscillator
— External and Internal Interrupt Sources
— Five Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, and
Standby
* /O and Packages
— 23 Programmable 1/O Lines
— 28-lead PDIP, 32-lead TQFP, and 32-pad QFN/MLF
¢ Operating Voltages
— 2.7V - 5.5V (ATmega8L)
— 4.5V - 5.5V (ATmega8)
* Speed Grades
— 0 - 8MHz (ATmega8L)
— 0-16MHz (ATmega8)
* Power Consumption at 4Mhz, 3V, 25°C
— Active: 3.6mA
— Idle Mode: 1.0mA
— Power-down Mode: 0.5pA

| /ltmeL

Altmel

8-bit Atmel with
8KBytes In-
System
Programmable
Flash

ATmega8
ATmega8L

Rev.2486AA-AVR-02/2013

| ATmega8(L)

Pin
Configurations

PDIP
(RESET) PC6 | 1 28 [1 PC5 (ADC5/SCL)
(RXD) PDO] 2 27 [1 PC4 (ADC4/SDA)
(TXD) PD1] 3 26 [1PC3 (ADC3)
(INTO) PD2 [4 25 [1PC2 (ADC2)
(INT1) PD305 24 1 PC1 (ADC1)
(XCK/T0) PD4 [6 23 [1PCO (ADCO)
vcedz 22 [1GND
GND] 8 21 [AREF
(XTAL1/TOSC1) PB6] 9 20 [AvVCC
(XTAL2/TOSC2) PB7] 10 19 1 PB5 (SCK)
(T1) PD5 O 11 18 1 PB4 (MISO)
(AINO) PD6] 12 17 2 PB3 (MOSI/0OC2)
(AIN1) PD7] 13 16 |1 PB2 (SS/OC1B)
(ICP1) PBO] 14 151 PB1 (OC1A)
TQFP Top View
o<
[GRa]
FQ9
PPN | TR I S
E oaomoooo
> X X|Wwaoaoaoao
skl
N~ O ©OWY N
o000 0000
[T T W W o
RN nEn N
A~ QDO © LW
[IR IR BRI VAR]
(INT1) PD3 O 1 @ 024 [1PC1 (ADC1)
(XCK/T0) PD4] 2 23 [1PCO (ADCO)
GND 3 22 [1ADC7
vccO4 21 [1GND
GND |5 20 [1 AREF
vccOe 19 1 ADC6
(XTAL1/TOSC1) PB6 |7 18 [J AVCC
(XTAL2/TOSC2) PB7 [] 8 O O 17 [1 PB5 (SCK)
Or-r A ®Y WO
O - - -
OOt
0 ONO - Q O Y
OO0 OQ0OO0Mm@oMmao
ooooaaa o
L3566 =3=
=5
[e]
es
MLF Top View
o<
O a
FQO
= -~ B I OAN
eoglwnoooo
EXX|ioaaaad
skl
A - O ©W T MON
00000000
oaooaaaaoa
O] r]n
AN~ Q®®IN © LW
MmO ANNNNA
(INT1) PD3] 1 @ """""""" ' 24[1PC1 (ADC1)
(XCK/TO) PD4] 2 H \ 23[1PCO (ADCO)
GNDL]3 i 22[1ADC7
vCcCl4 H 1 21[JGND
GND[]5 201 AREF
VCCl6 ' ' 19[1ADC6
(XTAL1/TOSC1) PB6] 7 1 \ 18[OJAvVCC
(XTAL2/TOSC2) PB7[]8 tecoooeceeeae 170 PB5 (SCK)
O a®mT W &
O - - = - =
OoOoOooOoO0ogd NOTE:
8 8 E 8 E % 8 E.{ The large center pad underneath the MLF
[a T o W a Wy o Wy Wy a Wy a Wy packages is made of metal and internally
g TTr<aoNO connected to GND. It should be soldered
Ezza - -0®n or glued to the PCB to ensure good
<< % 8 8 g s mechanical stability. If the center pad is
~ 9 [e left unconneted, the package might
@ g loosen from the PCB.

| /ltmeL

2486AA-AVR-02/2013

| ATmega8(L)

Overview The Atmel®AVR® ATmegas8 is a low-power CMOS 8-bit microcontroller based on the AVR RISC
architecture. By executing powerful instructions in a single clock cycle, the ATmega8 achieves
throughputs approaching 1MIPS per MHz, allowing the system designer to optimize power con-

sumption versus processing speed.

Block Diagram Figure 1. Block Diagram

RESET
PCO - PC6

A A A A A &

XTAL1

2

[

PBO - PB7
A A A A }—“\

XTAL2

vee
~N ~N
A
PORTC DRIVERS/BUFFERS PORTB DRIVERS/BUFFERS
GTND PORTC DIGITAL INTERFACE PORTB DIGITAL INTERFACE
< = >
MUX & ADC
ADC * INTERFACE A ™wi
AGND:
AREF ;
TIMERS/ —
PROGRAM STACK " GOUNTERs [« OSCILLATOR
COUNTER [T]| POINTER [*1]
I [
PROGRAM | % INTERNAL
FLASH SRAM e OSCILLATOR
i !
INSTRUCTION GENERAL WATCHDOG —
REGISTER | ||y PURPOSE e IVER OSCILLATOR
REGISTERS l
- X
INSTRUCTION MCU CTRL.
DECODER M Y " aTiMING
l « z
CONTROL INTERRUPT
AVR CPU RSETGAITS%SER > |—» EEPROM
s USART
h COMP.
- * INTERFACE [7|
PORTD DIGITAL INTERFACE

i

PORTD DRIVERS/BUFFERS

| /ltmeL

2486AA-AVR-02/2013

YVY VY VYV VY

PDO - PD7

| ATmega8(L)

The Atmel®AVR® core combines a rich instruction set with 32 general purpose working registers.
All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two inde-
pendent registers to be accessed in one single instruction executed in one clock cycle. The
resulting architecture is more code efficient while achieving throughputs up to ten times faster
than conventional CISC microcontrollers.

The ATmega8 provides the following features: 8 Kbytes of In-System Programmable Flash with
Read-While-Write capabilities, 512 bytes of EEPROM, 1 Kbyte of SRAM, 23 general purpose
I/0 lines, 32 general purpose working registers, three flexible Timer/Counters with compare
modes, internal and external interrupts, a serial programmable USART, a byte oriented Two-
wire Serial Interface, a 6-channel ADC (eight channels in TQFP and QFN/MLF packages) with
10-bit accuracy, a programmable Watchdog Timer with Internal Oscillator, an SPI serial port,
and five software selectable power saving modes. The Idle mode stops the CPU while allowing
the SRAM, Timer/Counters, SPI port, and interrupt system to continue functioning. The Power-
down mode saves the register contents but freezes the Oscillator, disabling all other chip func-
tions until the next Interrupt or Hardware Reset. In Power-save mode, the asynchronous timer
continues to run, allowing the user to maintain a timer base while the rest of the device is sleep-
ing. The ADC Noise Reduction mode stops the CPU and all /O modules except asynchronous
timer and ADC, to minimize switching noise during ADC conversions. In Standby mode, the
crystal/resonator Oscillator is running while the rest of the device is sleeping. This allows very
fast start-up combined with low-power consumption.

The device is manufactured using Atmel’s high density non-volatile memory technology. The
Flash Program memory can be reprogrammed In-System through an SPI serial interface, by a
conventional non-volatile memory programmer, or by an On-chip boot program running on the
AVR core. The boot program can use any interface to download the application program in the
Application Flash memory. Software in the Boot Flash Section will continue to run while the
Application Flash Section is updated, providing true Read-While-Write operation. By combining
an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the Atmel
ATmega8 is a powerful microcontroller that provides a highly-flexible and cost-effective solution
to many embedded control applications.

The ATmegas8 is supported with a full suite of program and system development tools, including
C compilers, macro assemblers, program simulators, and evaluation kits.

Disclaimer Typical values contained in this datasheet are based on simulations and characterization of
other AVR microcontrollers manufactured on the same process technology. Minimum and Maxi-
mum values will be available after the device is characterized.

|
Atmel 4

2486AA-AVR-02/2013

| ATmega8(L)

Pin Descriptions
VCC

GND

Port B (PB7..PB0)

XTAL1/XTAL2/TOSC1/
TOSC2

Port C (PC5..PCO0)

PC6/RESET

Port D (PD7..PDO)

Digital supply voltage.
Ground.

Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port B output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port B pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Depending on the clock selection fuse settings, PB6 can be used as input to the inverting Oscil-
lator amplifier and input to the internal clock operating circuit.

Depending on the clock selection fuse settings, PB7 can be used as output from the inverting
Oscillator amplifier.

If the Internal Calibrated RC Oscillator is used as chip clock source, PB7..6 is used as TOSC2..1
input for the Asynchronous Timer/Counter2 if the AS2 bit in ASSR is set.

The various special features of Port B are elaborated in “Alternate Functions of Port B” on page
58 and “System Clock and Clock Options” on page 25.

Port C is an 7-bit bi-directional 1/O port with internal pull-up resistors (selected for each bit). The
Port C output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port C pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

If the RSTDISBL Fuse is programmed, PC6 is used as an I/O pin. Note that the electrical char-
acteristics of PC6 differ from those of the other pins of Port C.

If the RSTDISBL Fuse is unprogrammed, PC6 is used as a Reset input. A low level on this pin
for longer than the minimum pulse length will generate a Reset, even if the clock is not running.
The minimum pulse length is given in Table 15 on page 38. Shorter pulses are not guaranteed to
generate a Reset.

The various special features of Port C are elaborated on page 61.

Port D is an 8-bit bi-directional 1/0 port with internal pull-up resistors (selected for each bit). The
Port D output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port D pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port D also serves the functions of various special features of the ATmega8 as listed on page
63.

RESET Reset input. A low level on this pin for longer than the minimum pulse length will generate a
reset, even if the clock is not running. The minimum pulse length is given in Table 15 on page
38. Shorter pulses are not guaranteed to generate a reset.

| AtmeL 5

2486AA-AVR-02/2013

| ATmega8(L)

AV¢c AV is the supply voltage pin for the A/D Converter, Port C (3..0), and ADC (7..6). It should be
externally connected to Vg, even if the ADC is not used. If the ADC is used, it should be con-
nected to V¢ through a low-pass filter. Note that Port C (5..4) use digital supply voltage, V.

AREF AREEF is the analog reference pin for the A/D Converter.

ADC7..6 (TQFP and In the TQFP and QFN/MLF package, ADC7..6 serve as analog inputs to the A/D converter.
QFN/MLF Package These pins are powered from the analog supply and serve as 10-bit ADC channels.

Only)

| Atme[6

2486AA-AVR-02/2013

| ATmega8(L)

Resources A comprehensive set of development tools, application notes and datasheets are available for
download on http://www.atmel.com/avr.

Data Retention Reliability Qualification results show that the projected data retention failure rate is much less
than 1 PPM over 20 years at 85°C or 100 years at 25°C.

| AtmeL
2486AA-AVR-02/2013

http://www.atmel.com/products/AVR/default.asp?family_id=607&source=redirect

| ATmega8(L)

About Code This datasheet contains simple code examples that briefly show how to use various parts of the
Examples device. These code examples assume that the part specific header file is included before compi-

lation. Be aware that not all C compiler vendors include bit definitions in the header files and
interrupt handling in C is compiler dependent. Please confirm with the C compiler documentation
for more details.

| /ltmeL 8

2486AA-AVR-02/2013

| ATmega8(L)

Atmel AVR CPU

Core
Introduction This section discusses the Atmel®AVR® core architecture in general. The main function of the
CPU core is to ensure correct program execution. The CPU must therefore be able to access
memories, perform calculations, control peripherals, and handle interrupts.
Architectural Figure 2. Block Diagram of the AVR MCU Architecture
Overview
‘ Data Bus 8-bit
Y
Program Status
P::olgfgm < Counter [T and Control
Memory <
Interrupt
y > 32x8 < Unit
Instruction General
Register Purpose [* SPI
< Registrers <> Unit
A
Instruction Watchdog
Decoder \ 4 4 < Timer
o 2 N
2 2
l 3 £ ALU PEN Analog
Control Lines 3) Comparator
< B
3 2
= © .
e £ << /O Modulet
Data PN > /O Module 2
> SRAM
<—>»| /O Module n
EEPROM |«
1/O Lines <
In order to maximize performance and parallelism, the AVR uses a Harvard architecture — with
separate memories and buses for program and data. Instructions in the Program memory are
executed with a single level pipelining. While one instruction is being executed, the next instruc-
tion is pre-fetched from the Program memory. This concept enables instructions to be executed
in every clock cycle. The Program memory is In-System Reprogrammable Flash memory.
The fast-access Register File contains 32 x 8-bit general purpose working registers with a single
clock cycle access time. This allows single-cycle Arithmetic Logic Unit (ALU) operation. In a typ-
ical ALU operation, two operands are output from the Register File, the operation is executed,
and the result is stored back in the Register File —in one clock cycle.
Six of the 32 registers can be used as three 16-bit indirect address register pointers for Data
Space addressing — enabling efficient address calculations. One of the these address pointers
| Atme[9

2486AA-AVR-02/2013

| ATmega8(L)

can also be used as an address pointer for look up tables in Flash Program memory. These
added function registers are the 16-bit X-register, Y-register, and Z-register, described later in
this section.

The ALU supports arithmetic and logic operations between registers or between a constant and
a register. Single register operations can also be executed in the ALU. After an arithmetic opera-
tion, the Status Register is updated to reflect information about the result of the operation.

The Program flow is provided by conditional and unconditional jump and call instructions, able to
directly address the whole address space. Most AVR instructions have a single 16-bit word for-
mat. Every Program memory address contains a 16-bit or 32-bit instruction.

Program Flash memory space is divided in two sections, the Boot program section and the
Application program section. Both sections have dedicated Lock Bits for write and read/write
protection. The SPM instruction that writes into the Application Flash memory section must
reside in the Boot program section.

During interrupts and subroutine calls, the return address Program Counter (PC) is stored on the
Stack. The Stack is effectively allocated in the general data SRAM, and consequently the Stack
size is only limited by the total SRAM size and the usage of the SRAM. All user programs must
initialize the SP in the reset routine (before subroutines or interrupts are executed). The Stack
Pointer SP is read/write accessible in the 1/0 space. The data SRAM can easily be accessed
through the five different addressing modes supported in the AVR architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.

A flexible interrupt module has its control registers in the I/O space with an additional global
interrupt enable bit in the Status Register. All interrupts have a separate Interrupt Vector in the
Interrupt Vector table. The interrupts have priority in accordance with their Interrupt Vector posi-
tion. The lower the Interrupt Vector address, the higher the priority.

The 1/0 memory space contains 64 addresses for CPU peripheral functions as Control Regis-
ters, SPI, and other 1/O functions. The I/O Memory can be accessed directly, or as the Data
Space locations following those of the Register File, 0x20 - Ox5F.

IEEEEsssssss—————— /|t mel 10

2486AA-AVR-02/2013

| ATmega8(L)

Arithmetic Logic The high-performance Atmel®AVR® ALU operates in direct connection with all the 32 general

Unit - ALU purpose working registers. Within a single clock cycle, arithmetic operations between general
purpose registers or between a register and an immediate are executed. The ALU operations
are divided into three main categories — arithmetic, logical, and bit-functions. Some implementa-
tions of the architecture also provide a powerful multiplier supporting both signed/unsigned
multiplication and fractional format. For a detailed description, see “Instruction Set Summary” on
page 311.

Status Register The Status Register contains information about the result of the most recently executed arithme-
tic instruction. This information can be used for altering program flow in order to perform
conditional operations. Note that the Status Register is updated after all ALU operations, as
specified in the Instruction Set Reference. This will in many cases remove the need for using the
dedicated compare instructions, resulting in faster and more compact code.

The Status Register is not automatically stored when entering an interrupt routine and restored
when returning from an interrupt. This must be handled by software.

The AVR Status Register — SREG — is defined as:

Bit 7 6 5 4 3 2 1 0
|] | T | H | s | v N z c | sReG

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

e Bit 7 — I: Global Interrupt Enable

The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individual inter-
rupt enable control is then performed in separate control registers. If the Global Interrupt Enable
Register is cleared, none of the interrupts are enabled independent of the individual interrupt
enable settings. The I-bit is cleared by hardware after an interrupt has occurred, and is set by
the RETI instruction to enable subsequent interrupts. The I-bit can also be set and cleared by
the application with the SEI and CLI instructions, as described in the Instruction Set Reference.

* Bit 6 — T: Bit Copy Storage
The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or desti-
nation for the operated bit. A bit from a register in the Register File can be copied into T by the

BST instruction, and a bit in T can be copied into a bit in a register in the Register File by the
BLD instruction.

e Bit 5 — H: Half Carry Flag

The Half Carry Flag H indicates a Half Carry in some arithmetic operations. Half Carry is useful
in BCD arithmetic. See the “Instruction Set Description” for detailed information.

e Bit4-S:SignBit,S=N®V

The S-bit is always an exclusive or between the Negative Flag N and the Two’s Complement
Overflow Flag V. See the “Instruction Set Description” for detailed information.

¢ Bit 3 - V: Two’s Complement Overflow Flag

The Two’s Complement Overflow Flag V supports two’s complement arithmetics. See the
“Instruction Set Description” for detailed information.

¢ Bit 2 — N: Negative Flag

The Negative Flag N indicates a negative result in an arithmetic or logic operation. See the
“Instruction Set Description” for detailed information.

| AtmeL 11
2486AA-AVR-02/2013

http://www.atmel.com/dyn/resources/prod_documents/doc0856.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc0856.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc0856.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc0856.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc0856.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc0856.pdf

| ATmega8(L)

General Purpose

e Bit1-2Z: Zero Flag

The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See the “Instruction
Set Description” for detailed information.

e Bit 0 - C: Carry Flag

The Carry Flag C indicates a Carry in an arithmetic or logic operation. See the “Instruction Set
Description” for detailed information.

The Register File is optimized for the AVR Enhanced RISC instruction set. In order to achieve

Register File the required performance and flexibility, the following input/output schemes are supported by the
Register File:
¢ One 8-bit output operand and one 8-bit result input
e Two 8-bit output operands and one 8-bit result input
¢ Two 8-bit output operands and one 16-bit result input
¢ One 16-bit output operand and one 16-bit result input
Figure 3 shows the structure of the 32 general purpose working registers in the CPU.
Figure 3. AVR CPU General Purpose Working Registers
7 0 Addr.
RO 0x00
R1 0x01
R2 0x02
R13 0x0D
General R14 0x0E
Purpose R15 0xOF
Working R16 0x10
Registers R17 0x11
R26 O0x1A X-register Low Byte
R27 0x1B X-register High Byte
R28 0x1C Y-register Low Byte
R29 0x1D Y-register High Byte
R30 Ox1E Z-register Low Byte
R31 0x1F Z-register High Byte
Most of the instructions operating on the Register File have direct access to all registers, and
most of them are single cycle instructions.
As shown in Figure 3, each register is also assigned a Data memory address, mapping them
directly into the first 32 locations of the user Data Space. Although not being physically imple-
mented as SRAM locations, this memory organization provides great flexibility in access of the
registers, as the X-pointer, Y-pointer, and Z-pointer Registers can be set to index any register in
the file.
|
Atmel 12

2486AA-AVR-02/2013

http://www.atmel.com/dyn/resources/prod_documents/doc0856.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc0856.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc0856.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc0856.pdf

| ATmega8(L)

The X-register, Y- The registers R26..R31 have some added functions to their general purpose usage. These reg-
register and Z-register isters are 16-bit address pointers for indirect addressing of the Data Space. The three indirect
address registers X, Y and Z are defined as described in Figure 4.

Figure 4. The X-register, Y-register and Z-Register

15 XH XL
X-register 7 o7 o]
R27 (0x1B) R26 (0x1A)
15 YH YL
Y-register I 7 0 I 7 0 I
R29 (0x1D) R28 (0x1C)
15 ZH ZL 0
Z-register I 7 0 I 7 0 I
R31 (0x1F) R30 (0x1E)

In the different addressing modes these address registers have functions as fixed displacement,
automatic increment, and automatic decrement (see the Instruction Set Reference for details).

Stack Pointer The Stack is mainly used for storing temporary data, for storing local variables and for storing
return addresses after interrupts and subroutine calls. The Stack Pointer Register always points
to the top of the Stack. Note that the Stack is implemented as growing from higher memory loca-
tions to lower memory locations. This implies that a Stack PUSH command decreases the Stack
Pointer.

The Stack Pointer points to the data SRAM Stack area where the Subroutine and Interrupt
Stacks are located. This Stack space in the data SRAM must be defined by the program before
any subroutine calls are executed or interrupts are enabled. The Stack Pointer must be set to
point above 0x60. The Stack Pointer is decremented by one when data is pushed onto the Stack
with the PUSH instruction, and it is decremented by two when the return address is pushed onto
the Stack with subroutine call or interrupt. The Stack Pointer is incremented by one when data is
popped from the Stack with the POP instruction, and it is incremented by two when address is
popped from the Stack with return from subroutine RET or return from interrupt RETI.

The AVR Stack Pointer is implemented as two 8-bit registers in the 1/0 space. The number of
bits actually used is implementation dependent. Note that the data space in some implementa-
tions of the AVR architecture is so small that only SPL is needed. In this case, the SPH Register
will not be present.

Bit 15 14 13 12 11 10 9 8
SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 SPH
SP7 SP6 SP5 SP4 SP3 SP2 SP1 SPO SPL
7 6 5 4 3 2 1 0
Read/Write RIW RIW RIW RIW RIW RW RIW RIW
RIW RIW RIW RIW RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
Instruction This section describes the general access timing concepts for instruction execution. The

Execution Timing Atmel®AVR® CPU is driven by the CPU clock clkgpy, directly generated from the selected clock
source for the chip. No internal clock division is used.

| AtmeL 13
2486AA-AVR-02/2013

http://www.atmel.com/dyn/resources/prod_documents/doc0856.pdf

| ATmega8(L)

Figure 5 shows the parallel instruction fetches and instruction executions enabled by the Har-
vard architecture and the fast-access Register File concept. This is the basic pipelining concept
to obtain up to 1MIPS per MHz with the corresponding unique results for functions per cost,
functions per clocks, and functions per power-unit.

Figure 5. The Parallel Instruction Fetches and Instruction Executions

T1 T2 T3 T4

ok — A4 N NN/

CPU

1st Instruction Fetch

1 | |

| | |

i l ;

1st Instruction Execute l | l
2nd Instruction Fetch | : |

| 1 |

T T T

| | |

| | |

2nd Instruction Execute
3rd Instruction Fetch
3rd Instruction Execute
4th Instruction Fetch X | | |

Figure 6 shows the internal timing concept for the Register File. In a single clock cycle an ALU
operation using two register operands is executed, and the result is stored back to the destina-
tion register.

Figure 6. Single Cycle ALU Operation

T T2 T3 T4

e S N S W L W A W

CPU

Total Execution Time

ALU Operation Execute

| |
! !
| |
! !
| |
| |
[[
| |
| |
T T
! !
| |

!
|
|
Register Operands Fetch }
|
!

Result Write Back

+ +
| |
! !

Reset and The Atmel®AVR® provides several different interrupt sources. These interrupts and the separate

Interrupt Handling Reset Vector each have a separate Program Vector in the Program memory space. All inter-
rupts are assigned individual enable bits which must be written logic one together with the
Global Interrupt Enable bit in the Status Register in order to enable the interrupt. Depending on
the Program Counter value, interrupts may be automatically disabled when Boot Lock Bits
BLBO02 or BLB12 are programmed. This feature improves software security. See the section
“Memory Programming” on page 215 for details.

The lowest addresses in the Program memory space are by default defined as the Reset and
Interrupt Vectors. The complete list of Vectors is shown in “Interrupts” on page 46. The list also
determines the priority levels of the different interrupts. The lower the address the higher is the
priority level. RESET has the highest priority, and next is INTO — the External Interrupt Request
0. The Interrupt Vectors can be moved to the start of the boot Flash section by setting the Inter-
rupt Vector Select (IVSEL) bit in the General Interrupt Control Register (GICR). Refer to
“Interrupts” on page 46 for more information. The Reset Vector can also be moved to the start of
the boot Flash section by programming the BOOTRST Fuse, see “Boot Loader Support — Read-
While-Write Self-Programming” on page 202.

| AtmeL 14
2486AA-AVR-02/2013

| ATmega8(L)

When an interrupt occurs, the Global Interrupt Enable I-bit is cleared and all interrupts are dis-
abled. The user software can write logic one to the I-bit to enable nested interrupts. All enabled
interrupts can then interrupt the current interrupt routine. The I-bit is automatically set when a
Return from Interrupt instruction — RETI — is executed.

There are basically two types of interrupts. The first type is triggered by an event that sets the
Interrupt Flag. For these interrupts, the Program Counter is vectored to the actual Interrupt Vec-
tor in order to execute the interrupt handling routine, and hardware clears the corresponding
Interrupt Flag. Interrupt Flags can also be cleared by writing a logic one to the flag bit position(s)
to be cleared. If an interrupt condition occurs while the corresponding interrupt enable bit is
cleared, the Interrupt Flag will be set and remembered until the interrupt is enabled, or the flag is
cleared by software. Similarly, if one or more interrupt conditions occur while the global interrupt
enable bit is cleared, the corresponding Interrupt Flag(s) will be set and remembered until the
global interrupt enable bit is set, and will then be executed by order of priority.

The second type of interrupts will trigger as long as the interrupt condition is present. These
interrupts do not necessarily have Interrupt Flags. If the interrupt condition disappears before the
interrupt is enabled, the interrupt will not be triggered.

When the AVR exits from an interrupt, it will always return to the main program and execute one
more instruction before any pending interrupt is served.

Note that the Status Register is not automatically stored when entering an interrupt routine, nor
restored when returning from an interrupt routine. This must be handled by software.

When using the CLI instruction to disable interrupts, the interrupts will be immediately disabled.
No interrupt will be executed after the CLI instruction, even if it occurs simultaneously with the
CLlI instruction. The following example shows how this can be used to avoid interrupts during the
timed EEPROM write sequence.

Assembly Code Example

in rlé6, SREG ; Store SREG value

cli ; disable interrupts during timed sequence
sbi EECR, EEMWE ; start EEPROM write

sbi EECR, EEWE

out SREG, rlé6 ; restore SREG value (I-bit)

C Code Example

char cSREG;
CcSREG = SREG; /* store SREG value */

/* disable interrupts during timed sequence */

_CLI();
EECR |: (1<<EEMWE) ; /* start EEPROM write */
EECR |= (1<<EEWE);

SREG = cSREG; /* restore SREG value (I-bit) */

| AtmeL 15
2486AA-AVR-02/2013

| ATmega8(L)

Interrupt Response
Time

When using the SEI instruction to enable interrupts, the instruction following SEI will be exe-

cuted before any pending interrupts, as shown in the following example.

Assembly Code Example

sei ,; set global interrupt enable
sleep,; enter sleep, waiting for interrupt
; note: will enter sleep before any pending

; ilnterrupt(s)

C Code Example

_SEI(); /* set global interrupt enable */
_SLEEP(); /* enter sleep, walting for interrupt */

/* note: will enter sleep before any pending interrupt (s)

*/

The interrupt execution response for all the enabled Atmel®AVR® interrupts is four clock cycles
minimum. After four clock cycles, the Program Vector address for the actual interrupt handling
routine is executed. During this 4-clock cycle period, the Program Counter is pushed onto the
Stack. The Vector is normally a jump to the interrupt routine, and this jump takes three clock
cycles. If an interrupt occurs during execution of a multi-cycle instruction, this instruction is com-
pleted before the interrupt is served. If an interrupt occurs when the MCU is in sleep mode, the
interrupt execution response time is increased by four clock cycles. This increase comes in addi-

tion to the start-up time from the selected sleep mode.

A return from an interrupt handling routine takes four clock cycles. During these four clock
cycles, the Program Counter (2 bytes) is popped back from the Stack, the Stack Pointer is incre-

mented by 2, and the I-bit in SREG is set.

| /ltmeL

2486AA-AVR-02/2013

16

| ATmega8(L)

AVR ATmega8
Memories

In-System
Reprogrammable
Flash Program
Memory

This section describes the different memories in the Atmel®’AVR® ATmega8. The AVR architec-
ture has two main memory spaces, the Data memory and the Program Memory space. In
addition, the ATmega8 features an EEPROM Memory for data storage. All three memory spaces
are linear and regular.

The ATmega8 contains 8Kbytes On-chip In-System Reprogrammable Flash memory for pro-
gram storage. Since all AVR instructions are 16-bits or 32-bits wide, the Flash is organized as
4K x 16 bits. For software security, the Flash Program memory space is divided into two sec-
tions, Boot Program section and Application Program section.

The Flash memory has an endurance of at least 10,000 write/erase cycles. The ATmega8 Pro-
gram Counter (PC) is 12 bits wide, thus addressing the 4K Program memory locations. The
operation of Boot Program section and associated Boot Lock Bits for software protection are
described in detail in “Boot Loader Support — Read-While-Write Self-Programming” on page
202. “Memory Programming” on page 215 contains a detailed description on Flash Program-
ming in SPI- or Parallel Programming mode.

Constant tables can be allocated within the entire Program memory address space (see the
LPM — Load Program memory instruction description).

Timing diagrams for instruction fetch and execution are presented in “Instruction Execution Tim-
ing” on page 13.

Figure 7. Program Memory Map

$000

Application Flash Section

B

Boot Flash Section

$FFF

| /ltmeL 17

2486AA-AVR-02/2013

| I\Tf]11€9§]iii3(l.)

SRAM Data Figure 8 shows how the Atmel®AVR® SRAM Memory is organized.

Memory The lower 1120 Data memory locations address the Register File, the I/O Memory, and the inter-
nal data SRAM. The first 96 locations address the Register File and I/O Memory, and the next
1024 locations address the internal data SRAM.

The five different addressing modes for the Data memory cover: Direct, Indirect with Displace-
ment, Indirect, Indirect with Pre-decrement, and Indirect with Post-increment. In the Register
File, registers R26 to R31 feature the indirect addressing pointer registers.
The direct addressing reaches the entire data space.
The Indirect with Displacement mode reaches 63 address locations from the base address given
by the Y-register or Z-register.
When using register indirect addressing modes with automatic pre-decrement and post-incre-
ment, the address registers X, Y and Z are decremented or incremented.
The 32 general purpose working registers, 64 1/0 Registers, and the 1024 bytes of internal data
SRAM in the ATmega8 are all accessible through all these addressing modes. The Register File
is described in “General Purpose Register File” on page 12.
Figure 8. Data Memory Map
Register File Data Address Space
RO $0000
R1 $0001
R2 $0002
R29 $001D
R30 $001E
Rt $001F
I’O Registers
$00 $0020
$01 $0021
$02 $0022
$3D $005D
$3E $005E
$F 1 $005F
Internal SRAM
$0060
$0061
$045E
$045F
| Atme[18

2486AA-AVR-02/2013

| ATmega8(L)

Data Memory This section describes the general access timing concepts for internal memory access. The
Access Times internal data SRAM access is performed in two clkgp cycles as described in Figure 9.

Figure 9. On-chip Data SRAM Access Cycles
T1 T2 T3

Y A Y N S

CPU

| |
| | |
Address | Compute Address | X__Address Valid |
Data 1 : : o
WR _ I e U
| | |
Data : : : °
| | | 5
RD \ \ d T
| | l
Memory Vccess Instruction Next Instruction
EEPROM Data The ATmega8 contains 512bytes of data EEPROM memory. It is organized as a separate data
Memory space, in which single bytes can be read and written. The EEPROM has an endurance of at

least 100,000 write/erase cycles. The access between the EEPROM and the CPU is described
below, specifying the EEPROM Address Registers, the EEPROM Data Register, and the
EEPROM Control Register.

“Memory Programming” on page 215 contains a detailed description on EEPROM Programming
in SPI- or Parallel Programming mode.

EEPROM Read/Write The EEPROM Access Registers are accessible in the I/O space.

Access The write access time for the EEPROM is given in Table 1 on page 21. A self-timing function,

however, lets the user software detect when the next byte can be written. If the user code con-
tains instructions that write the EEPROM, some precautions must be taken. In heavily filtered
power supplies, V¢ is likely to rise or fall slowly on Power-up/down. This causes the device for
some period of time to run at a voltage lower than specified as minimum for the clock frequency
used. See “Preventing EEPROM Corruption” on page 23. for details on how to avoid problems in
these situations.

In order to prevent unintentional EEPROM writes, a specific write procedure must be followed.
Refer to “The EEPROM Control Register — EECR” on page 20 for details on this.

When the EEPROM is read, the CPU is halted for four clock cycles before the next instruction is
executed. When the EEPROM is written, the CPU is halted for two clock cycles before the next
instruction is executed.

| AtmeL 19
2486AA-AVR-02/2013

| ATmega8(L)

The EEPROM Address
Register— EEARH and Bit 15 14 13 12 1" 10 9 8
EEARL - - - - - - - EEARS8 EEARH
EEAR7 | EEAR6 | EEAR5 | EEAR4 | EEAR3 | EEAR2 | EEAR1 EEARO EEARL
7 6 5 4 3 2 1 0
Read/Write R R R R R R R R/IW
R/W R/IW R/IW R/W R/IW R/W R/W RIW
Initial Value 0 0 0 0 0 0 0 X
X X X X X X X X

¢ Bits 15..9 — Res: Reserved Bits

These bits are reserved bits in the ATmega8 and will always read as zero.

¢ Bits 8..0 - EEARS..0: EEPROM Address

The EEPROM Address Registers — EEARH and EEARL — specify the EEPROM address in the
512bytes EEPROM space. The EEPROM data bytes are addressed linearly between 0 and 511.

The initial value of EEAR is undefined. A proper value must be written before the EEPROM may
be accessed.

The EEPROM Data

Register — EEDR Bit 7 6 5 4 3 2 1 0
| wss LsB | EEDR

Read/Write R/W R/W R/W R/W R/W RIW R/W R/W

Initial Value 0 0 0 0 0 0 0 0

* Bits 7..0 - EEDR7..0: EEPROM Data

For the EEPROM write operation, the EEDR Register contains the data to be written to the
EEPROM in the address given by the EEAR Register. For the EEPROM read operation, the
EEDR contains the data read out from the EEPROM at the address given by EEAR.

The EEPROM Control

Register — EECR Bit 7 6 5 4 3 2 1 0
| - - - - EERIE | EEMWE | EEWE EERE | EECR
Read/Write R R R R RIW RIW R/W RIW
Initial Value 0 0 0 0 0 0 X 0

¢ Bits 7..4 — Res: Reserved Bits

These bits are reserved bits in the Atmel°’AVR® ATmega8 and will always read as zero.
e Bit 3 - EERIE: EEPROM Ready Interrupt Enable

Writing EERIE to one enables the EEPROM Ready Interrupt if the | bit in SREG is set. Writing
EERIE to zero disables the interrupt. The EEPROM Ready interrupt generates a constant inter-
rupt when EEWE is cleared.

¢ Bit 2 - EEMWE: EEPROM Master Write Enable

The EEMWE bit determines whether setting EEWE to one causes the EEPROM to be written.
When EEMWE is set, setting EEWE within four clock cycles will write data to the EEPROM at
the selected address If EEMWE is zero, setting EEWE will have no effect. When EEMWE has
been written to one by software, hardware clears the bit to zero after four clock cycles. See the
description of the “Bit 1 — EEWE: EEPROM Write Enable” for an EEPROM write procedure.

* Bit 1 - EEWE: EEPROM Write Enable

The EEPROM Write Enable Signal EEWE is the write strobe to the EEPROM. When address
and data are correctly set up, the EEWE bit must be written to one to write the value into the
EEPROM. The EEMWE bit must be written to one before a logical one is written to EEWE, oth-

| AtmeL 20
2486AA-AVR-02/2013

| ATmega8(L)

erwise no EEPROM write takes place. The following procedure should be followed when writing
the EEPROM (the order of steps 3 and 4 is not essential):

1. Wait until EEWE becomes zero

Wait until SPMEN in SPMCR becomes zero

Write new EEPROM address to EEAR (optional)

Write new EEPROM data to EEDR (optional)

Write a logical one to the EEMWE bit while writing a zero to EEWE in EECR
Within four clock cycles after setting EEMWE, write a logical one to EEWE

o0~

The EEPROM can not be programmed during a CPU write to the Flash memory. The software
must check that the Flash programming is completed before initiating a new EEPROM write.
Step 2 is only relevant if the software contains a boot loader allowing the CPU to program the
Flash. If the Flash is never being updated by the CPU, step 2 can be omitted. See “Boot Loader
Support — Read-While-Write Self-Programming” on page 202 for details about boot
programming.

Caution: An interrupt between step 5 and step 6 will make the write cycle fail, since the
EEPROM Master Write Enable will time-out. If an interrupt routine accessing the EEPROM is
interrupting another EEPROM access, the EEAR or EEDR Register will be modified, causing the
interrupted EEPROM access to fail. It is recommended to have the Global Interrupt Flag cleared
during all the steps to avoid these problems.

When the write access time has elapsed, the EEWE bit is cleared by hardware. The user soft-
ware can poll this bit and wait for a zero before writing the next byte. When EEWE has been set,
the CPU is halted for two cycles before the next instruction is executed.

* Bit 0 - EERE: EEPROM Read Enable

The EEPROM Read Enable Signal EERE is the read strobe to the EEPROM. When the correct
address is set up in the EEAR Register, the EERE bit must be written to a logic one to trigger the
EEPROM read. The EEPROM read access takes one instruction, and the requested data is
available immediately. When the EEPROM is read, the CPU is halted for four cycles before the
next instruction is executed.

The user should poll the EEWE bit before starting the read operation. If a write operation is in
progress, it is neither possible to read the EEPROM, nor to change the EEAR Register.

The calibrated Oscillator is used to time the EEPROM accesses. Table 1 lists the typical pro-
gramming time for EEPROM access from the CPU.

Table 1. EEPROM Programming Time

Number of Calibrated RC
Symbol Oscillator Cycles'! Typ Programming Time

EEPROM Write (from CPU) 8448 8.5ms

Note: 1. Uses 1MHz clock, independent of CKSEL Fuse settings

| AtmeL 21

2486AA-AVR-02/2013

| ATmega8(L)

The following code examples show one assembly and one C function for writing to the
EEPROM. The examples assume that interrupts are controlled (for example by disabling inter-
rupts globally) so that no interrupts will occur during execution of these functions. The examples
also assume that no Flash boot loader is present in the software. If such code is present, the

EEPROM write function must also wait for any ongoing SPM command to finish.

Assembly Code Example

EEPROM_write:
; Wait for completion of previous write

sbic EECR, EEWE

rjmp EEPROM_write

; Set up address (rl8:rl17) in address register

out EEARH, rl8

out EEARL, rl7

; Write data (rl6) to data register

out EEDR,rl6

; Write logical one to EEMWE

sbi EECR, EEMWE

; Start eeprom write by setting EEWE

sbi EECR, EEWE

ret

C Code Example

{

/* Wait for completion of previous write */
while (EECR & (1<<EEWE))

/* Set up address and data registers */
EEAR = uiAddress;

EEDR = ucData;

/* Write logical one to EEMWE */

EECR |= (1<<EEMWE) ;

/* Start eeprom write by setting EEWE */
EECR |= (1<<EEWE);

void EEPROM _write (unsigned int uiAddress, unsigned char ucData)

| /ltmeL

2486AA-AVR-02/2013

22

| ATmega8(L)

The next code examples show assembly and C functions for reading the EEPROM. The exam-
ples assume that interrupts are controlled so that no interrupts will occur during execution of
these functions.

Assembly Code Example

EEPROM_read:
; Wait for completion of previous write
sbic EECR, EEWE
rjmp EEPROM_read
; Set up address (rl8:rl17) in address register
out EEARH, rl8
out EEARL, rl7
; Start eeprom read by writing EERE
sbi EECR, EERE
; Read data from data register
in 1rl6,EEDR

ret

C Code Example

unsigned char EEPROM_read (unsigned int uiAddress)
{

/* Wait for completion of previous write */

while (EECR & (1<<EEWE))

/* Set up address register */

EEAR = uiAddress;

/* Start eeprom read by writing EERE */

EECR |= (1<<EERE);

/* Return data from data register */

return EEDR;

EEPROM Write during When entering Power-down sleep mode while an EEPROM write operation is active, the

Power-down Sleep EEPROM write operation will continue, and will complete before the Write Access time has

Mode passed. However, when the write operation is completed, the Oscillator continues running, and
as a consequence, the device does not enter Power-down entirely. It is therefore recommended
to verify that the EEPROM write operation is completed before entering Power-down.

Preventing EEPROM During periods of low V. the EEPROM data can be corrupted because the supply voltage is
Corruption too low for the CPU and the EEPROM to operate properly. These issues are the same as for
board level systems using EEPROM, and the same design solutions should be applied.

An EEPROM data corruption can be caused by two situations when the voltage is too low. First,
a regular write sequence to the EEPROM requires a minimum voltage to operate correctly. Sec-
ond, the CPU itself can execute instructions incorrectly, if the supply voltage is too low.

EEPROM data corruption can easily be avoided by following this design recommendation:

Keep the AVR RESET active (low) during periods of insufficient power supply voltage. This
can be done by enabling the internal Brown-out Detector (BOD). If the detection level of the
internal BOD does not match the needed detection level, an external low V- Reset Protec-

| /| t m eL 23
2486AA-AVR-02/2013

| ATmega8(L)

/0 Memory

tion circuit can be used. If a reset occurs while a write operation is in progress, the write
operation will be completed provided that the power supply voltage is sufficient.

The 1/0 space definition of the ATmega8 is shown in “Register Summary” on page 309.

All Atmel®AVR® ATmega8 I/Os and peripherals are placed in the 1/0 space. The 1/O locations
are accessed by the IN and OUT instructions, transferring data between the 32 general purpose
working registers and the 1/0O space. 1/0O Registers within the address range 0x00 - Ox1F are
directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single
bits can be checked by using the SBIS and SBIC instructions. Refer to the “Instruction Set Sum-
mary” on page 311 for more details. When using the 1/O specific commands IN and OUT, the 1/O
addresses 0x00 - Ox3F must be used. When addressing 1/O Registers as data space using LD
and ST instructions, 0x20 must be added to these addresses.

For compatibility with future devices, reserved bits should be written to zero if accessed.
Reserved I/0 memory addresses should never be written.

Some of the Status Flags are cleared by writing a logical one to them. Note that the CBI and SBI
instructions will operate on all bits in the /0 Register, writing a one back into any flag read as
set, thus clearing the flag. The CBI and SBI instructions work with registers 0x00 to Ox1F only.

The 1/0 and Peripherals Control Registers are explained in later sections.

| /ltmeL 24

2486AA-AVR-02/2013

| ATmega8(L)

System Clock

and Clock
Options
Clock Systems Figure 10 presents the principal clock systems in the Atmel®AVR® and their distribution. All of
and their the clocks need not be active at a given time. In order to reduce power consumption, the clocks
Distribution 0 modules not being used can be halted by using different sleep modes, as described in “Power
t dul t bei d be halted b ing diff tsl d d ibed in “P
Management and Sleep Modes” on page 33. The clock systems are detailed Figure 10.
Figure 10. Clock Distribution
A h G 11/0 Flash and
TmeriCounter || Modules ADC GRU Core RAM EEPROM
i Y A A i A W'Y
clKapc
clko AVR Clock clkgpy
Control Unit
ClkASY CIkFLASH
Y 4
Reset Logic Watchdog Timer
F ¥ *
Source Clock Watchdog Clock
/ Clock \ Watchdog
Multiplexer Oscillator
W N
Timer/Counter External RC Crystal Low-Frequency Calibrated RC
Oscillator Oscillator External Clock Oscillator Crystal Oscillator Oscillator
CPU Clock - clk¢py The CPU clock is routed to parts of the system concerned with operation of the AVR core.
Examples of such modules are the General Purpose Register File, the Status Register and the
Data memory holding the Stack Pointer. Halting the CPU clock inhibits the core from performing
general operations and calculations.
I/0 Clock - clko The 1/0O clock is used by the majority of the I/O modules, like Timer/Counters, SPI, and USART.

The 1/O clock is also used by the External Interrupt module, but note that some external inter-
rupts are detected by asynchronous logic, allowing such interrupts to be detected even if the I/O
clock is halted. Also note that address recognition in the TWI module is carried out asynchro-
nously when clkq is halted, enabling TWI address reception in all sleep modes.

Flash Clock — clkg oy The Flash clock controls operation of the Flash interface. The Flash clock is usually active simul-
taneously with the CPU clock.

| AtmeL 25

2486AA-AVR-02/2013

| ATmega8(L)

Asynchronous Timer

Clock Sources

The Asynchronous Timer clock allows the Asynchronous Timer/Counter to be clocked directly
from an external 32kHz clock crystal. The dedicated clock domain allows using this Timer/Coun-
ter as a real-time counter even when the device is in sleep mode. The Asynchronous
Timer/Counter uses the same XTAL pins as the CPU main clock but requires a CPU main clock
frequency of more than four times the Oscillator frequency. Thus, asynchronous operation is
only available while the chip is clocked on the Internal Oscillator.

The ADC is provided with a dedicated clock domain. This allows halting the CPU and I/O clocks
in order to reduce noise generated by digital circuitry. This gives more accurate ADC conversion
results.

The device has the following clock source options, selectable by Flash Fuse Bits as shown
below. The clock from the selected source is input to the AVR clock generator, and routed to the
appropriate modules.

Table 2. Device Clocking Options Select(")

Device Clocking Option CKSELS3..0
External Crystal/Ceramic Resonator 1111 -1010
External Low-frequency Crystal 1001
External RC Oscillator 1000 - 0101
Calibrated Internal RC Oscillator 0100 - 0001
External Clock 0000

Note: 1. For all fuses “1” means unprogrammed while “0” means programmed

The various choices for each clocking option is given in the following sections. When the CPU
wakes up from Power-down or Power-save, the selected clock source is used to time the start-
up, ensuring stable Oscillator operation before instruction execution starts. When the CPU starts
from reset, there is as an additional delay allowing the power to reach a stable level before com-
mencing normal operation. The Watchdog Oscillator is used for timing this real-time part of the
start-up time. The number of WDT Oscillator cycles used for each time-out is shown in Table 3.
The frequency of the Watchdog Oscillator is voltage dependent as shown in “ATmega8 Typical
Characteristics — TA = -40°C to 85°C”. The device is shipped with CKSEL = “0001” and SUT =
“10” (1MHz Internal RC Oscillator, slowly rising power).

Table 3. Number of Watchdog Oscillator Cycles

Typical Time-out (V¢ = 5.0V) | Typical Time-out (V¢ = 3.0V) Number of Cycles
4.1ms 4.3ms 4K (4,096)
65ms 69ms 64K (65,536)
|
Atmel 26

2486AA-AVR-02/2013

| ATmega8(L)

Crystal Oscillator

XTAL1 and XTAL2 are input and output, respectively, of an inverting amplifier which can be con-
figured for use as an On-chip Oscillator, as shown in Figure 11. Either a quartz crystal or a
ceramic resonator may be used. The CKOPT Fuse selects between two different Oscillator
amplifier modes. When CKOPT is programmed, the Oscillator output will oscillate a full rail-to-
rail swing on the output. This mode is suitable when operating in a very noisy environment or
when the output from XTAL2 drives a second clock buffer. This mode has a wide frequency
range. When CKOPT is unprogrammed, the Oscillator has a smaller output swing. This reduces
power consumption considerably. This mode has a limited frequency range and it cannot be
used to drive other clock buffers.

For resonators, the maximum frequency is 8MHz with CKOPT unprogrammed and 16MHz with
CKOPT programmed. C1 and C2 should always be equal for both crystals and resonators. The
optimal value of the capacitors depends on the crystal or resonator in use, the amount of stray
capacitance, and the electromagnetic noise of the environment. Some initial guidelines for
choosing capacitors for use with crystals are given in Table 4. For ceramic resonators, the
capacitor values given by the manufacturer should be used.

Figure 11. Crystal Oscillator Connections

c2
— |—17 XTAL2
0
S IXTAL

GND

The Oscillator can operate in three different modes, each optimized for a specific frequency
range. The operating mode is selected by the fuses CKSELS..1 as shown in Table 4.

Table 4. Crystal Oscillator Operating Modes

Frequency Range Recommended Range for Capacitors
CKOPT CKSELS3..1 (MHz) C1 and C2 for Use with Crystals (pF)
1 101 0.4-0.9 -
1 110 0.9-3.0 12-22
1 111 3.0-8.0 12-22
0 101, 110, 111 1.0< 12-22

Note: 1. This option should not be used with crystals, only with ceramic resonators

The CKSELO Fuse together with the SUT1..0 Fuses select the start-up times as shown in Table
5 on page 28.

| AtmeL 27

2486AA-AVR-02/2013

| ATmega8(L)

Low-frequency
Crystal Oscillator

Table 5. Start-up Times for the Crystal Oscillator Clock Selection

Start-up Time Additional Delay
from Power-down from Reset
CKSELO | SUT1..0 and Power-save (Ve = 5.0V) Recommended Usage

0 00 258 CK(M 4.1ms C_)e_ramlc resonator, fast
rising power

0 01 258 CK 65ms C?gramlc resonator, slowly
rising power

0 10 1K CK® _ Ceramic resonator, BOD
enabled

0 11 1K CK® 4.1ms C?gramlc resonator, fast
rising power

1 00 1K CK® 65ms C?gramlc resonator, slowly
rising power

1 01 16K CK _ Crystal Oscillator, BOD
enabled

1 10 16K CK 4.1ms C?r}/stal Oscillator, fast
rising power

1 11 16K CK 65ms erstal Oscillator, slowly
rising power

Notes: 1. These options should only be used when not operating close to the maximum frequency of the

device, and only if frequency stability at start-up is not important for the application. These
options are not suitable for crystals

2. These options are intended for use with ceramic resonators and will ensure frequency stability
at start-up. They can also be used with crystals when not operating close to the maximum fre-
quency of the device, and if frequency stability at start-up is not important for the application

To use a 32.768kHz watch crystal as the clock source for the device, the Low-frequency Crystal
Oscillator must be selected by setting the CKSEL Fuses to “1001”. The crystal should be con-
nected as shown in Figure 11 on page 27. By programming the CKOPT Fuse, the user can
enable internal capacitors on XTAL1 and XTAL2, thereby removing the need for external capac-
itors. The internal capacitors have a nominal value of 36pF.

When this Oscillator is selected, start-up times are determined by the SUT Fuses as shown in
Table 6.

Table 6. Start-up Times for the Low-frequency Crystal Oscillator Clock Selection

Start-up Time from Additional Delay
Power-down and from Reset
SUT1..0 Power-save (Vgc =5.0V) Recommended Usage
00 1K CK(" 4.1ms Fast rising power or BOD enabled
01 1K CK() 65ms Slowly rising power
10 32K CK 65ms Stable frequency at start-up
11 Reserved
Note: 1. These options should only be used if frequency stability at start-up is not important for the
application
External RC For timing insensitive applications, the external RC configuration shown in Figure 12 on page 29
Oscillator can be used. The frequency is roughly estimated by the equation f = 1/(3RC). C should be at
|
Atmel 28

2486AA-AVR-02/2013

| ATmega8(L)

least 22pF. By programming the CKOPT Fuse, the user can enable an internal 36pF capacitor
between XTAL1 and GND, thereby removing the need for an external capacitor.

Figure 12. External RC Configuration

VCC
R NC ———|XTAL2
t XTAL1
C

j GND

The Oscillator can operate in four different modes, each optimized for a specific frequency
range. The operating mode is selected by the fuses CKSELS3..0 as shown in Table 7.

Table 7. External RC Oscillator Operating Modes

CKSEL3..0 Frequency Range (MHz)
0101 0.1-0.9
0110 09-3.0
0111 3.0-8.0
1000 8.0-12.0
When this Oscillator is selected, start-up times are determined by the SUT Fuses as shown in
Table 8.
Table 8. Start-up Times for the External RC Oscillator Clock Selection
Start-up Time from Additional Delay
Power-down and from Reset
SUT1..0 Power-save (Ve =5.0V) Recommended Usage
00 18 CK - BOD enabled
01 18 CK 4.1ms Fast rising power
10 18 CK 65ms Slowly rising power
11 6 CK(" 4.1ms Fast rising power or BOD enabled

Note: 1. This option should not be used when operating close to the maximum frequency of the device

| AtmeL 29

2486AA-AVR-02/2013

| ATmega8(L)

Calibrated Internal The calibrated internal RC Oscillator provides a fixed 1.0MHz, 2.0MHz, 4.0MHz, or 8.0MHz

RC Oscillator clock. All frequencies are nominal values at 5V and 25°C. This clock may be selected as the
system clock by programming the CKSEL Fuses as shown in Table 9. If selected, it will operate
with no external components. The CKOPT Fuse should always be unprogrammed when using
this clock option. During reset, hardware loads the 1MHz calibration byte into the OSCCAL Reg-
ister and thereby automatically calibrates the RC Oscillator. At 5V, 25°C and 1.0MHz Oscillator
frequency selected, this calibration gives a frequency within +3% of the nominal frequency.
Using run-time calibration methods as described in application notes available at
www.atmel.com/avr it is possible to achieve +1% accuracy at any given V. and Temperature.
When this Oscillator is used as the chip clock, the Watchdog Oscillator will still be used for the
Watchdog Timer and for the Reset Time-out. For more information on the pre-programmed cali-
bration value, see the section “Calibration Byte” on page 218.

Table 9. Internal Calibrated RC Oscillator Operating Modes

CKSEL3..0 Nominal Frequency (MHz)
0001 1.0
0010 2.0
0011 4.0
0100 8.0

Note: 1. The device is shipped with this option selected

When this Oscillator is selected, start-up times are determined by the SUT Fuses as shown in
Table 10. PB6 (XTAL1/TOSC1) and PB7(XTAL2/TOSC2) can be used as either general I/O pins
or Timer Oscillator pins..

Table 10. Start-up Times for the Internal Calibrated RC Oscillator Clock Selection

Start-up Time from Additional Delay
Power-down and from Reset
SUT1..0 Power-save (Vge =5.0V) Recommended Usage
00 6 CK - BOD enabled
01 6 CK 4.1ms Fast rising power
100 6 CK 65ms Slowly rising power
11 Reserved

Note: 1. The device is shipped with this option selected

| AtmeL 30

2486AA-AVR-02/2013

| I\T[]11€E§J5iii(l.)

Oscillator Calibration
Register - OSCCAL

Bit 7 6 5 4 3 2 1 0

| CAL7 CAL6 CALS CAL4 CAL3 CAL2 CAL1 CALO | OSCCAL
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value Device Specific Calibration Value

e Bits 7..0 — CAL7..0: Oscillator Calibration Value

Writing the calibration byte to this address will trim the Internal Oscillator to remove process vari-
ations from the Oscillator frequency. During Reset, the 1MHz calibration value which is located
in the signature row High byte (address 0x00) is automatically loaded into the OSCCAL Regis-
ter. If the internal RC is used at other frequencies, the calibration values must be loaded
manually. This can be done by first reading the signature row by a programmer, and then store
the calibration values in the Flash or EEPROM. Then the value can be read by software and
loaded into the OSCCAL Register. When OSCCAL is zero, the lowest available frequency is
chosen. Writing non-zero values to this register will increase the frequency of the Internal Oscil-
lator. Writing OxFF to the register gives the highest available frequency. The calibrated Oscillator
is used to time EEPROM and Flash access. If EEPROM or Flash is written, do not calibrate to
more than 10% above the nominal frequency. Otherwise, the EEPROM or Flash write may fail.
Note that the Oscillator is intended for calibration to 1.0MHz, 2.0MHz, 4.0MHz, or 8.0MHz. Tun-
ing to other values is not guaranteed, as indicated in Table 11.

Table 11. Internal RC Oscillator Frequency Range

Min Frequency in Percentage of Max Frequency in Percentage of
OSCCAL Value Nominal Frequency (%) Nominal Frequency (%)
0x00 50 100
Ox7F 75 150
OxFF 100 200
| AtmeL 31

2486AA-AVR-02/2013

| ATmega8(L)

External Clock To drive the device from an external clock source, XTAL1 should be driven as shown in Figure
13. To run the device on an external clock, the CKSEL Fuses must be programmed to “0000”.
By programming the CKOPT Fuse, the user can enable an internal 36pF capacitor between
XTAL1 and GND, and XTAL2 and GND.

Figure 13. External Clock Drive Configuration

NC —— XTAL2

EXTERNAL
CLOCK
SIGNAL

XTALA1

GND

-

When this clock source is selected, start-up times are determined by the SUT Fuses as shown in

Table 12.
Table 12. Start-up Times for the External Clock Selection
Start-up Time from Additional Delay
Power-down and from Reset
SUT1..0 Power-save (Vge =5.0V) Recommended Usage
00 6 CK - BOD enabled
01 6 CK 4.1ms Fast rising power
10 6 CK 65ms Slowly rising power
11 Reserved

When applying an external clock, it is required to avoid sudden changes in the applied clock fre-
quency to ensure stable operation of the MCU. A variation in frequency of more than 2% from
one clock cycle to the next can lead to unpredictable behavior. It is required to ensure that the
MCU is kept in Reset during such changes in the clock frequency.

Timer/Counter For AVR microcontrollers with Timer/Counter Oscillator pins (TOSC1 and TOSC2), the crystal is

Oscillator connected directly between the pins. By programming the CKOPT Fuse, the user can enable
internal capacitors on XTAL1 and XTAL2, thereby removing the need for external capacitors.
The Oscillator is optimized for use with a 32.768kHz watch crystal. Applying an external clock
source to TOSC1 is not recommended.

Note: The Timer/Counter Oscillator uses the same type of crystal oscillator as Low-Frequency Oscillator
and the internal capacitors have the same nominal value of 36pF

| /| t m eL 32
2486AA-AVR-02/2013

| ATmega8(L)

Power Sleep modes enable the application to shut down unused modules in the MCU, thereby saving
Management power. The AVR provides various sleep modes allowing the user to tailor the power consump-
tion to the application’s requirements.

and Sleep , N , _
To enter any of the five sleep modes, the SE bit in MCUCR must be written to logic one and a

Modes SLEEP instruction must be executed. The SM2, SM1, and SMO bits in the MCUCR Register
select which sleep mode (ldle, ADC Noise Reduction, Power-down, Power-save, or Standby)
will be activated by the SLEEP instruction. See Table 13 for a summary. If an enabled interrupt
occurs while the MCU is in a sleep mode, the MCU wakes up. The MCU is then halted for four
cycles in addition to the start-up time, it executes the interrupt routine, and resumes execution
from the instruction following SLEEP. The contents of the Register File and SRAM are unaltered
when the device wakes up from sleep. If a reset occurs during sleep mode, the MCU wakes up
and executes from the Reset Vector.

Note that the Extended Standby mode present in many other AVR MCUs has been removed in
the ATmega8, as the TOSC and XTAL inputs share the same physical pins.

Figure 10 on page 25 presents the different clock systems in the ATmega8, and their distribu-
tion. The figure is helpful in selecting an appropriate sleep mode.

MCU Control Register The MCU Control Register contains control bits for power management.
- MCUCR

Bit 7 6 5 4 3 2 1 0
|l sE | sm2 | sm1 | sMo | Isci1 | ISC10 | ISCo1 | ISC00 | MCUCR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

e Bit 7 — SE: Sleep Enable

The SE bit must be written to logic one to make the MCU enter the sleep mode when the SLEEP
instruction is executed. To avoid the MCU entering the sleep mode unless it is the programmer’s
purpose, it is recommended to set the Sleep Enable (SE) bit just before the execution of the
SLEEP instruction.

¢ Bits 6..4 — SM2..0: Sleep Mode Select Bits 2, 1, and 0

These bits select between the five available sleep modes as shown in Table 13.

Table 13. Sleep Mode Select

SM2 SM1 SMO Sleep Mode
0 0 0 Idle
0 0 1 ADC Noise Reduction
0 1 0 Power-down
0 1 1 Power-save
1 0 0 Reserved
1 0 1 Reserved
1 1 0 Standby("

Note: 1. Standby mode is only available with external crystals or resonators

| /| t m eL 33
2486AA-AVR-02/2013

| ATmega8(L)

Idle Mode When the SM2..0 bits are written to 000, the SLEEP instruction makes the MCU enter Ildle
mode, stopping the CPU but allowing SPI, USART, Analog Comparator, ADC, Two-wire Serial
Interface, Timer/Counters, Watchdog, and the interrupt system to continue operating. This sleep
mode basically halts clkgp, and clkg 4gn, While allowing the other clocks to run.

Idle mode enables the MCU to wake up from external triggered interrupts as well as internal
ones like the Timer Overflow and USART Transmit Complete interrupts. If wake-up from the
Analog Comparator interrupt is not required, the Analog Comparator can be powered down by
setting the ACD bit in the Analog Comparator Control and Status Register — ACSR. This will
reduce power consumption in Idle mode. If the ADC is enabled, a conversion starts automati-
cally when this mode is entered.

ADC Noise When the SM2..0 bits are written to 001, the SLEEP instruction makes the MCU enter ADC

Reduction Mode Noise Reduction mode, stopping the CPU but allowing the ADC, the external interrupts, the
Two-wire Serial Interface address watch, Timer/Counter2 and the Watchdog to continue
operating (if enabled). This sleep mode basically halts clk;q, clkgpy, and clkg agH, While allowing
the other clocks to run.

This improves the noise environment for the ADC, enabling higher resolution measurements. If
the ADC is enabled, a conversion starts automatically when this mode is entered. Apart form the
ADC Conversion Complete interrupt, only an External Reset, a Watchdog Reset, a Brown-out
Reset, a Two-wire Serial Interface address match interrupt, a Timer/Counter2 interrupt, an
SPM/EEPROM ready interrupt, or an external level interrupt on INTO or INT1, can wake up the
MCU from ADC Noise Reduction mode.

Power-down Mode When the SM2..0 bits are written to 010, the SLEEP instruction makes the MCU enter Power-
down mode. In this mode, the External Oscillator is stopped, while the external interrupts, the
Two-wire Serial Interface address watch, and the Watchdog continue operating (if enabled).
Only an External Reset, a Watchdog Reset, a Brown-out Reset, a Two-wire Serial Interface
address match interrupt, or an external level interrupt on INTO or INT1, can wake up the MCU.
This sleep mode basically halts all generated clocks, allowing operation of asynchronous mod-
ules only.

Note that if a level triggered interrupt is used for wake-up from Power-down mode, the changed
level must be held for some time to wake up the MCU. Refer to “External Interrupts” on page 66
for details.

When waking up from Power-down mode, there is a delay from the wake-up condition occurs
until the wake-up becomes effective. This allows the clock to restart and become stable after
having been stopped. The wake-up period is defined by the same CKSEL Fuses that define the
Reset Time-out period, as described in “Clock Sources” on page 26.

Power-save Mode When the SM2..0 bits are written to 011, the SLEEP instruction makes the MCU enter Power-
save mode. This mode is identical to Power-down, with one exception:

If Timer/Counter2 is clocked asynchronously, that is, the AS2 bit in ASSR is set,
Timer/Counter2 will run during sleep. The device can wake up from either Timer Overflow or
Output Compare event from Timer/Counter2 if the corresponding Timer/Counter2 interrupt
enable bits are set in TIMSK, and the global interrupt enable bit in SREG is set.

If the asynchronous timer is NOT clocked asynchronously, Power-down mode is recommended
instead of Power-save mode because the contents of the registers in the asynchronous timer
should be considered undefined after wake-up in Power-save mode if AS2 is 0.

This sleep mode basically halts all clocks except clk,gy, allowing operation only of asynchronous
modules, including Timer/Counter 2 if clocked asynchronously.

| /| t m eL 34
2486AA-AVR-02/2013

| ATmega8(L)

Standby Mode

When the SM2..0 bits are 110 and an external crystal/resonator clock option is selected, the
SLEEP instruction makes the MCU enter Standby mode. This mode is identical to Power-down
with the exception that the Oscillator is kept running. From Standby mode, the device wakes up
in 6 clock cycles.

Table 14. Active Clock Domains and Wake-up Sources in the Different Sleep Modes

Active Clock Domains Oscillators Wake-up Sources
TWI SPM/

Sleep Main Clock Timer Osc. | INT1| Address| Timer| EEPROM Other
Mode clkcpy | Clkpash| ClKio | Clkapc | Clkasy | Source Enabled| Enabled | INTO| Match 2 Ready | ADC| 1/O
Idle X X X X X@ X X X X X X
ADC Noise X X X X@ X@ | X X X X
Reduction
Power X® X
Down
Power X X® X® X X
Save
Standby(" X X® X
Notes: 1. External Crystal or resonator selected as clock source

2.

If AS2 bit in ASSR is set

3. Only level interrupt INT1 and INTO

Minimizing Power

Consumption

Analog-to-Digital
Converter (ADC)

Analog Comparator

There are several issues to consider when trying to minimize the power consumption in an AVR
controlled system. In general, sleep modes should be used as much as possible, and the sleep
mode should be selected so that as few as possible of the device’s functions are operating. All
functions not needed should be disabled. In particular, the following modules may need special
consideration when trying to achieve the lowest possible power consumption.

If enabled, the ADC will be enabled in all sleep modes. To save power, the ADC should be dis-
abled before entering any sleep mode. When the ADC is turned off and on again, the next
conversion will be an extended conversion. Refer to “Analog-to-Digital Converter” on page 189
for details on ADC operation.

When entering Idle mode, the Analog Comparator should be disabled if not used. When entering
ADC Noise Reduction mode, the Analog Comparator should be disabled. In the other sleep
modes, the Analog Comparator is automatically disabled. However, if the Analog Comparator is
set up to use the Internal Voltage Reference as input, the Analog Comparator should be dis-
abled in all sleep modes. Otherwise, the Internal Voltage Reference will be enabled,
independent of sleep mode. Refer to “Analog Comparator” on page 186 for details on how to
configure the Analog Comparator.

| AtmeL 35

2486AA-AVR-02/2013

| ATmega8(L)

Brown-out Detector

Internal Voltage
Reference

Watchdog Timer

Port Pins

If the Brown-out Detector is not needed in the application, this module should be turned off. If the
Brown-out Detector is enabled by the BODEN Fuse, it will be enabled in all sleep modes, and
hence, always consume power. In the deeper sleep modes, this will contribute significantly to
the total current consumption. Refer to “Brown-out Detection” on page 40 for details on how to
configure the Brown-out Detector.

The Internal Voltage Reference will be enabled when needed by the Brown-out Detector, the
Analog Comparator or the ADC. If these modules are disabled as described in the sections
above, the internal voltage reference will be disabled and it will not be consuming power. When
turned on again, the user must allow the reference to start up before the output is used. If the
reference is kept on in sleep mode, the output can be used immediately. Refer to “Internal Volt-
age Reference” on page 42 for details on the start-up time.

If the Watchdog Timer is not needed in the application, this module should be turned off. If the
Watchdog Timer is enabled, it will be enabled in all sleep modes, and hence, always consume
power. In the deeper sleep modes, this will contribute significantly to the total current consump-
tion. Refer to “Watchdog Timer” on page 43 for details on how to configure the Watchdog Timer.

When entering a sleep mode, all port pins should be configured to use minimum power. The
most important thing is then to ensure that no pins drive resistive loads. In sleep modes where
the both the 1/0 clock (clk,,o) and the ADC clock (clkapc) are stopped, the input buffers of the
device will be disabled. This ensures that no power is consumed by the input logic when not
needed. In some cases, the input logic is needed for detecting wake-up conditions, and it will
then be enabled. Refer to the section “Digital Input Enable and Sleep Modes” on page 55 for
details on which pins are enabled. If the input buffer is enabled and the input signal is left floating
or have an analog signal level close to Vc/2, the input buffer will use excessive power.

| AtmeL 36

2486AA-AVR-02/2013

| ATmega8(L)

System Control
and Reset

Resetting the AVR

Reset Sources

During Reset, all /0 Registers are set to their initial values, and the program starts execution
from the Reset Vector. If the program never enables an interrupt source, the Interrupt Vectors
are not used, and regular program code can be placed at these locations. This is also the case if
the Reset Vector is in the Application section while the Interrupt Vectors are in the boot section
or vice versa. The circuit diagram in Figure 14 on page 38 shows the Reset Logic. Table 15 on
page 38 defines the electrical parameters of the reset circuitry.

The 1/O ports of the AVR are immediately reset to their initial state when a reset source goes
active. This does not require any clock source to be running.

After all reset sources have gone inactive, a delay counter is invoked, stretching the internal
reset. This allows the power to reach a stable level before normal operation starts. The time-out
period of the delay counter is defined by the user through the CKSEL Fuses. The different selec-
tions for the delay period are presented in “Clock Sources” on page 26.

The ATmega8 has four sources of Reset:

e Power-on Reset. The MCU is reset when the supply voltage is below the Power-on Reset
threshold (Vpgor)

e External Reset. The MCU is reset when a low level is present on the RESET pin for longer
than the minimum pulse length

¢ Watchdog Reset. The MCU is reset when the Watchdog Timer period expires and the
Watchdog is enabled

e Brown-out Reset. The MCU is reset when the supply voltage V; is below the Brown-out
Reset threshold (Vgot) and the Brown-out Detector is enabled

| AtmeL 37

2486AA-AVR-02/2013

| ATmega8(L)

Figure 14. Reset Logic

DATA BUS

<

MCU Control and Status
Register (MCUCSR)

LL| L [T
[any

Sl
Power-On Reset ojois =
Brown-Out
BOI?L?EE)/EENL »| Reset Circuit -
[l] Pull-up Resistor ﬁ
14
RESET SPKE|Ly| Reset Circut |i } s Q *g
Ll
m ~{R £
& z
Watchdog 14
Timer %
T =
2
o
Watchdog ©
Oscillator
A4
>
Clock CK . Delay Counters
Generator 4 TIMEOUT
A A
CKSEL[3:0]
SUT[1:0]
Table 15. Reset Characteristics
Symbol | Parameter Condition Min | Typ | Max | Units
Power-on Reset Threshold
) 1.4 23
Voltage (rising)
Veor v
Power-on Reset Threshold 13 23
Voltage (falling) ’)
VRst RESET Pin Threshold Voltage 0.2 0.9 Vee
Minimum pulse width on
ST | RESET Pin 15 1 ps
v Brown-out Reset Threshold BODLEVEL =1 2.4 2.6 2.9 v
)
BoT | Voltage BODLEVEL=0 | 37 | 40 | 45
Minimum low voltage period for | BODLEVEL = 1 2
t - i us
BOD Brown-out Detection BODLEVEL = 0 5
Vivst Brown-out Detector hysteresis 130 mV
Notes: 1. The Power-on Reset will not work unless the supply voltage has been below Vpqy (falling)
2. Vgor may be below nominal minimum operating voltage for some devices. For devices where

this is the case, the device is tested down to V¢ = Vgor during the production test. This guar-
antees that a Brown-out Reset will occur before V. ; drops to a voltage where correct
operation of the microcontroller is no longer guaranteed. The test is performed using BOD-
LEVEL = 1 for ATmega8L and BODLEVEL = 0 for ATmega8. BODLEVEL = 1 is not applicable

for ATmega8

| /ltmeL

2486AA-AVR-02/2013

38

| ATmega8(L)

Power-on Reset A Power-on Reset (POR) pulse is generated by an On-chip detection circuit. The detection level
is defined in Table 15 on page 38. The POR is activated whenever V. is below the detection
level. The POR circuit can be used to trigger the Start-up Reset, as well as to detect a failure in
supply voltage.

A Power-on Reset (POR) circuit ensures that the device is reset from Power-on. Reaching the
Power-on Reset threshold voltage invokes the delay counter, which determines how long the
device is kept in RESET after V. rise. The RESET signal is activated again, without any delay,
when V; decreases below the detection level.

Figure 15. MCU Start-up, RESET Tied to V¢

1

-7 Veor
Vee J

Vv
RESET J RST

«— trour ——>

TIME-OUT

INTERNAL
RESET

Figure 16. MCU Start-up, RESET Extended Externally

1
-7~ Veor

1
| \
1 1
1)
A
RESET ! - TRST
: :
1 1
1 1
TIME-OUT | - trour
| |
1 1
1 1
1 1
1 1
INTERNAL A
RESET '
|
Atmel 39

2486AA-AVR-02/2013

| ATmega8(L)

External Reset

Brown-out Detection

An External Reset is generated by a low level on the RESET pin. Reset pulses longer than the
minimum pulse width (see Table 15 on page 38) will generate a reset, even if the clock is not
running. Shorter pulses are not guaranteed to generate a reset. When the applied signal
reaches the Reset Threshold Voltage — Vigt On its positive edge, the delay counter starts the
MCU after the time-out period tyoy1 has expired.

Figure 17. External Reset During Operation

Vee
RESET ! 1
1 1
1 1
1 1
1 1
| € trour —>
TIME-OUT : J
1
1
1
|
INTERNAL
RESET

ATmega8 has an On-chip Brown-out Detection (BOD) circuit for monitoring the V¢ level during
operation by comparing it to a fixed trigger level. The trigger level for the BOD can be selected
by the fuse BODLEVEL to be 2.7V (BODLEVEL unprogrammed), or 4.0V (BODLEVEL pro-
grammed). The trigger level has a hysteresis to ensure spike free Brown-out Detection. The
hysteresis on the detection level should be interpreted as

Veots = Veor + Vhyst/2 and Vgor. = Vgor - Viyst/2.

The BOD circuit can be enabled/disabled by the fuse BODEN. When the BOD is enabled
(BODEN programmed), and V. decreases to a value below the trigger level (Vgor. in Figure
18), the Brown-out Reset is immediately activated. When V. increases above the trigger level
(VgoT. in Figure 18), the delay counter starts the MCU after the time-out period t;o,1 has
expired.

The BOD circuit will only detect a drop in V. if the voltage stays below the trigger level for lon-
ger than tzop given in Table 15 on page 38.

Figure 18. Brown-out Reset During Operation

RESET

TIME-OUT

INTERNAL
RESET i

| AtmeL 40

2486AA-AVR-02/2013

| ATmega8(L)

Watchdog Reset When the Watchdog times out, it will generate a short reset pulse of 1 CK cycle duration. On the
falling edge of this pulse, the delay timer starts counting the time-out period t;o 1. Refer to page
43 for details on operation of the Watchdog Timer.

Figure 19. Watchdog Reset During Operation

Vee
RESET
—>» «— 1CKCycle
WDT
TIME-OUT n
RESET | trour —)
TIME-OUT |
INTERNAL
RESET
MCU Control and The MCU Control and Status Register provides information on which reset source caused an
Status Register - MCU Reset.
MCUCSR Bit 7 6 5 4 3 2 1 0
| - = = = WDRF | BORF | EXTRF | PORF | MCUCSR
Read/Write R R R R R/W R/W R/W R/W
Initial Value 0 0 0 0 See Bit Description
¢ Bit 7..4 — Res: Reserved Bits
These bits are reserved bits in the ATmega8 and always read as zero.
e Bit 3 — WDRF: Watchdog Reset Flag
This bit is set if a Watchdog Reset occurs. The bit is reset by a Power-on Reset, or by writing a
logic zero to the flag.
e Bit 2 - BORF: Brown-out Reset Flag
This bit is set if a Brown-out Reset occurs. The bit is reset by a Power-on Reset, or by writing a
logic zero to the flag.
¢ Bit 1 — EXTRF: External Reset Flag
This bit is set if an External Reset occurs. The bit is reset by a Power-on Reset, or by writing a
logic zero to the flag.
¢ Bit 0 — PORF: Power-on Reset Flag
This bit is set if a Power-on Reset occurs. The bit is reset only by writing a logic zero to the flag.
To make use of the Reset Flags to identify a reset condition, the user should read and then reset
the MCUCSR as early as possible in the program. If the register is cleared before another reset
occurs, the source of the reset can be found by examining the Reset Flags.
| Atme[41

2486AA-AVR-02/2013

| ATmega8(L)

Internal Voltage
Reference

Voltage Reference
Enable Signals and
Start-up Time

ATmega8 features an internal bandgap reference. This reference is used for Brown-out Detec-
tion, and it can be used as an input to the Analog Comparator or the ADC. The 2.56V reference
to the ADC is generated from the internal bandgap reference.

The voltage reference has a start-up time that may influence the way it should be used. The
start-up time is given in Table 16. To save power, the reference is not always turned on. The ref-
erence is on during the following situations:

1. When the BOD is enabled (by programming the BODEN Fuse)

2. When the bandgap reference is connected to the Analog Comparator (by setting the
ACBG bit in ACSR)

3. When the ADC is enabled
Thus, when the BOD is not enabled, after setting the ACBG bit or enabling the ADC, the user
must always allow the reference to start up before the output from the Analog Comparator or

ADC is used. To reduce power consumption in Power-down mode, the user can avoid the three
conditions above to ensure that the reference is turned off before entering Power-down mode.

Table 16. Internal Voltage Reference Characteristics

Symbol | Parameter Min Typ Max Units
Viag Bandgap reference voltage 1.15 1.30 1.40 \Y
tsg Bandgap reference start-up time 40 70 us
lsg Bandgap reference current consumption 10 HA
|
Atmel 42

2486AA-AVR-02/2013

| ATmega8(L)

Watchdog Timer The Watchdog Timer is clocked from a separate On-chip Oscillator which runs at 1MHz. This is
the typical value at V; = 5V. See characterization data for typical values at other V levels. By
controlling the Watchdog Timer prescaler, the Watchdog Reset interval can be adjusted as
shown in Table 17 on page 44. The WDR — Watchdog Reset — instruction resets the Watchdog
Timer. The Watchdog Timer is also reset when it is disabled and when a Chip Reset occurs.
Eight different clock cycle periods can be selected to determine the reset period. If the reset
period expires without another Watchdog Reset, the ATmega8 resets and executes from the
Reset Vector. For timing details on the Watchdog Reset, refer to page 41.

To prevent unintentional disabling of the Watchdog, a special turn-off sequence must be fol-
lowed when the Watchdog is disabled. Refer to “Watchdog Timer Control Register - WDTCR”
for details.

Figure 20. Watchdog Timer

WATCHDOG _ WATCHDOG
OSCILLATOR > PRESCALER
AN ERREE
WATCRHEDS(%EBI_ 818l3|2|glg 3|8
- YVYVVYVY
WDPO >
WDP1 A\
N /
WDP2 P\
WDE
MCU RESET
Watchdog Timer
Control Register - Bit 7 6 5 4 3 2 1 0
WDTCR | - - - WDCE WDE WDP2 | WDP1 wDP0 | WDTCR
Read/Write R R R R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
e Bits 7..5 — Res: Reserved Bits
These bits are reserved bits in the ATmega8 and will always read as zero.
e Bit 4 — WDCE: Watchdog Change Enable
This bit must be set when the WDE bit is written to logic zero. Otherwise, the Watchdog will not
be disabled. Once written to one, hardware will clear this bit after four clock cycles. Refer to “Bit
3 — WDE: Watchdog Enable” on page 44for a Watchdog disable procedure. In Safety Level 1
and 2, this bit must also be set when changing the prescaler bits. See the Code Examples on
page 45.
| Atme[43

2486AA-AVR-02/2013

| ATmega8(L)

¢ Bit 3 - WDE: Watchdog Enable

When the WDE is written to logic one, the Watchdog Timer is enabled, and if the WDE is written
to logic zero, the Watchdog Timer function is disabled. WDE can only be cleared if the WDCE bit
has logic level one. To disable an enabled Watchdog Timer, the following procedure must be
followed:

1. In the same operation, write a logic one to WDCE and WDE. A logic one must be written
to WDE even though it is set to one before the disable operation starts

2. Within the next four clock cycles, write a logic 0 to WDE. This disables the Watchdog
¢ Bits 2..0 - WDP2, WDP1, WDPO: Watchdog Timer Prescaler 2, 1, and 0
The WDP2, WDP1, and WDPO bits determine the Watchdog Timer prescaling when the Watch-

dog Timer is enabled. The different prescaling values and their corresponding Timeout Periods
are shown in Table 17.

Table 17. Watchdog Timer Prescale Select

Number of WDT Typical Time-out Typical Time-out
WDP2 | WDP1 | WDPO | Oscillator Cycles at Ve = 3.0V at Ve = 5.0V
0 0 0 16K (16,384) 17.1ms 16.3ms
0 0 1 32K (32,768) 34.3ms 32.5ms
0 1 0 64K (65,536) 68.5ms 65ms
0 1 1 128K (131,072) 0.14s 0.13s
1 0 0 256K (262,144) 0.27s 0.26s
1 0 1 512K (524,288) 0.55s 0.52s
1 1 0 1,024K (1,048,576) 1.1s 1.0s
1 1 1 2,048K (2,097,152) 2.2s 2.1s

The following code example shows one assembly and one C function for turning off the WDT.
The example assumes that interrupts are controlled (for example, by disabling interrupts glob-
ally) so that no interrupts will occur during execution of these functions.

| /ltmeL 44

2486AA-AVR-02/2013

| ATmega8(L)

Timed Sequences
for Changing the
Configuration of
the Watchdog
Timer

Safety Level 1
(WDTON Fuse
Unprogrammed)

Safety Level 2
(WDTON Fuse
Programmed)

The sequence for changing the Watchdog Timer configuration differs slightly between the safety
levels. Separate procedures are described for each level.

Assembly Code Example

WDT_off:
; reset WDT

WDR

; Write logical one to WDCE and WDE
in 1rl6, WDTCR

ori rl6, (1<<WDCE) | (1<<WDE)

out WDTCR, rlé6

; Turn off WDT

1di rlé6, (O<<WDE)

out WDTCR, rlé6

ret

C Code Example

void WDT off (void)

{
/* reset WDT */

_WDR() ;
/* Write logical one to WDCE and WDE */
WDTCR |= (1<<WDCE) | (1<<WDE);

/* Turn off WDT */
WDTCR = 0x00;

In this mode, the Watchdog Timer is initially disabled, but can be enabled by writing the WDE bit
to 1 without any restriction. A timed sequence is needed when changing the Watchdog Time-out
period or disabling an enabled Watchdog Timer. To disable an enabled Watchdog Timer and/or
changing the Watchdog Time-out, the following procedure must be followed:

1. In the same operation, write a logic one to WDCE and WDE. A logic one must be written
to WDE regardless of the previous value of the WDE bit

2. Within the next four clock cycles, in the same operation, write the WDE and WDP bits as
desired, but with the WDCE bit cleared

In this mode, the Watchdog Timer is always enabled, and the WDE bit will always read as one. A
timed sequence is needed when changing the Watchdog Time-out period. To change the
Watchdog Time-out, the following procedure must be followed:

1. In the same operation, write a logical one to WDCE and WDE. Even though the WDE
always is set, the WDE must be written to one to start the timed sequence

Within the next four clock cycles, in the same operation, write the WDP bits as desired, but with
the WDCE bit cleared. The value written to the WDE bit is irrelevant.

| AtmeL 45

2486AA-AVR-02/2013

| ATmega8(L)

Interrupts

Interrupt Vectors

in ATmega8

This section describes the specifics of the interrupt handling performed by the ATmega8. For a
general explanation of the AVR interrupt handling, refer to “Reset and Interrupt Handling” on

page 14.

Table 18. Reset and Interrupt Vectors

Program
Vector No. | Address® | Source Interrupt Definition
1 0x000" | RESET External Pin, Power-on Reset, Brown-out
Reset, and Watchdog Reset
2 0x001 INTO External Interrupt Request 0
3 0x002 INTH External Interrupt Request 1
4 0x003 TIMER2 COMP Timer/Counter2 Compare Match
5 0x004 TIMER2 OVF Timer/Counter2 Overflow
6 0x005 TIMER1 CAPT Timer/Counter1 Capture Event
7 0x006 TIMER1 COMPA | Timer/Counter1 Compare Match A
8 0x007 TIMER1 COMPB | Timer/Counter1 Compare Match B
9 0x008 TIMER1 OVF Timer/Counter1 Overflow
10 0x009 TIMERO OVF Timer/Counter0 Overflow
11 0x00A SPI, STC Serial Transfer Complete
12 0x00B USART, RXC USART, Rx Complete
13 0x00C USART, UDRE USART Data Register Empty
14 0x00D USART, TXC USART, Tx Complete
15 0x00E ADC ADC Conversion Complete
16 0x00F EE_RDY EEPROM Ready
17 0x010 ANA_COMP Analog Comparator
18 0x011 TWI Two-wire Serial Interface
19 0x012 SPM_RDY Store Program Memory Ready
Notes: 1. When the BOOTRST Fuse is programmed, the device will jump to the Boot Loader address at

2.

reset, see “Boot Loader Support — Read-While-Write Self-Programming” on page 202

When the IVSEL bit in GICR is set, Interrupt Vectors will be moved to the start of the boot
Flash section. The address of each Interrupt Vector will then be the address in this table added
to the start address of the boot Flash section

Table 19 on page 47 shows reset and Interrupt Vectors placement for the various combinations
of BOOTRST and IVSEL settings. If the program never enables an interrupt source, the Interrupt
Vectors are not used, and regular program code can be placed at these locations. This is also
the case if the Reset Vector is in the Application section while the Interrupt Vectors are in the

boot section or vice versa.

| /ltmeL

2486AA-AVR-02/2013

46

| ATmega8(L)

Table 19. Reset and Interrupt Vectors Placement

BOOTRST(") | IVSEL | Reset Address Interrupt Vectors Start Address
1 0 0x000 0x001
1 1 0x000 Boot Reset Address + 0x001
0 0 Boot Reset Address 0x001
0 1 Boot Reset Address Boot Reset Address + 0x001
Note: 1. The Boot Reset Address is shown in Table 82 on page 213. For the BOOTRST Fuse “1”

means unprogrammed while “0” means programmed

The most typical and general program setup for the Reset and Interrupt Vector Addresses in

ATmega8 is:
addressLabels Code
$000 rjmp RESET
$001 rjmp EXT_INTO
$002 rjmp EXT_INT1
$003 rjmp TIM2_COMP
$004 rjmp TIM2_OVF
$005 rjmp TIM1_CAPT
$006 rjmp TIM1_COMPA
$007 rjmp TIM1_COMPB
$008 rjmp TIM1_OVF
$009 rjmp TIMO_OVF
$00a rjmp SPI_STC
$00b rjmp USART_RXC
$00c rjmp USART_UDRE
$00d rijmp USART TXC
$00e rjmp ADC
S00f rjmp EE_RDY
$010 rjmp ANA_COMP
s011 rjmp TWSI
$012 rjmp SPM_RDY
$013 RESET: 1di
$014 out SPH,rlé6
$015 1di rl6, low (RAMEND)
s0l6 out SPL,rl6
$017 sei
$018 <instr> xxx

rl16,high (RAMEND) ;

| /ltmeL

2486AA-AVR-02/2013

Comments

7

7

7

Reset Handler

IRQO Handler

IRQ1 Handler

Timer2 Compare Handler

Timer2 Overflow Handler

Timerl Capture Handler

Timerl CompareA Handler

Timerl CompareB Handler

Timerl Overflow Handler

Timer0 Overflow Handler

SPI Transfer Complete Handler
USART RX Complete Handler

UDR Empty Handler

USART TX Complete Handler

ADC Conversion Complete Handler
EEPROM Ready Handler

Analog Comparator Handler
Two-wire Serial Interface Handler

Store Program Memory Ready Handler
Main program start

Set Stack Pointer to top of RAM

Enable interrupts

47

| ATmega8(L)

When the BOOTRST Fuse is unprogrammed, the boot section size set to 2Kbytes and the
IVSEL bit in the GICR Register is set before any interrupts are enabled, the most typical and
general program setup for the Reset and Interrupt Vector Addresses is:

AddressLabels Code Comments

$000 rjmp RESET ; Reset handler

$001 RESET:1di rl6,high (RAMEND); Main program start

$002 out SPH,rlé6 ; Set Stack Pointer to top of RAM
$003 1di rl6, low (RAMEND)

$004 out SPL,rl6

$005 seil ; Enable interrupts

$006 <instr> xxx

.org S$c01

Sc01l rjmp EXT_INTO ; IRQO Handler

Sc02 rjmp EXT_INT1 ; IRQ1 Handler

Scl2 rjmp SPM_RDY ; Store Program Memory Ready Handler

When the BOOTRST Fuse is programmed and the boot section size set to 2Kbytes, the most
typical and general program setup for the Reset and Interrupt Vector Addresses is:

AddressLabels Code Comments
.org $001
$001 rjmp EXT_INTO ; IRQO0 Handler
$002 rjmp EXT_INT1 ; IRQ1 Handler
$012 rjmp SPM_RDY ; Store Program Memory Ready Handler
.org $c00
$c00 rjmp RESET ; Reset handler
$Sc01 RESET:1di rl6,high (RAMEND); Main program start
$c02 out SPH,rl6 ; Set Stack Pointer to top of RAM
$c03 1di rl6, low (RAMEND)
Sc04 out SPL,rl6
$c05 seil ; Enable interrupts
$c06 <instr> xxx
|
Atmel 48

2486AA-AVR-02/2013

| ATmega8(L)

Moving Interrupts
Between Application
and Boot Space

General Interrupt
Control Register -
GICR

When the BOOTRST Fuse is programmed, the boot section size set to 2Kbytes, and the IVSEL
bit in the GICR Register is set before any interrupts are enabled, the most typical and general
program setup for the Reset and Interrupt Vector Addresses is:

AddressLabels Code Comments

.org $c00

$c00 rjmp RESET ; Reset handler

Sc01l rjmp EXT_INTO ; IRQO Handler

$c02 rjmp EXT _INT1 ; IRQ1 Handler

Scl2 rjmp SPM_RDY ; Store Program Memory Ready Handler
Scl3 RESET: 1di rl6,high (RAMEND); Main program start

Scld out SPH,rl6 ; Set Stack Pointer to top of RAM
$cl5 1di rl6, low (RAMEND)

Sclé out SPL,rl6

Scl7 seil ; Enable interrupts

$cl8 <instr> xxx

The General Interrupt Control Register controls the placement of the Interrupt Vector table.

Bit 7 6 5 4 3 2 1 0

| Tt INTO = = IVSEL IVCE | GICR
Read/Write R/W R/W R R R R R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 1 — IVSEL: Interrupt Vector Select

When the IVSEL bit is cleared (zero), the Interrupt Vectors are placed at the start of the Flash
memory. When this bit is set (one), the Interrupt Vectors are moved to the beginning of the Boot
Loader section of the Flash. The actual address of the start of the boot Flash section is deter-
mined by the BOOTSZ Fuses. Refer to the section “Boot Loader Support — Read-While-Write
Self-Programming” on page 202 for details. To avoid unintentional changes of Interrupt Vector
tables, a special write procedure must be followed to change the IVSEL bit:

1. Write the Interrupt Vector Change Enable (IVCE) bit to one
2. Within four cycles, write the desired value to IVSEL while writing a zero to IVCE

Interrupts will automatically be disabled while this sequence is executed. Interrupts are disabled
in the cycle IVCE is set, and they remain disabled until after the instruction following the write to
IVSEL. If IVSEL is not written, interrupts remain disabled for four cycles. The I-bit in the Status
Register is unaffected by the automatic disabling.

Note: If Interrupt Vectors are placed in the Boot Loader section and Boot Lock bit BLBO2 is pro-
grammed, interrupts are disabled while executing from the Application section. If Interrupt
Vectors are placed in the Application section and Boot Lock bit BLB12 is programed, interrupts
are disabled while executing from the Boot Loader section. Refer to the section “Boot Loader
Support — Read-While-Write Self-Programming” on page 202 for details on Boot Lock Bits.

| AtmeL 49

2486AA-AVR-02/2013

| ATmega8(L)

e Bit 0 — IVCE: Interrupt Vector Change Enable

The IVCE bit must be written to logic one to enable change of the IVSEL bit. IVCE is cleared by
hardware four cycles after it is written or when IVSEL is written. Setting the IVCE bit will disable

interrupts, as explained in the IVSEL description above. See Code Example below.

Assembly Code Example

Move_interrupts:
; Enable change of Interrupt Vectors
1di rl6, (1<<IVCE)
out GICR, rl6
; Move interrupts to boot Flash section
1di rl6, (1<<IVSEL)
out GICR, rl6

ret

C Code Example

void Move_interrupts (void)

{
/* Enable change of Interrupt Vectors */
GICR = (1<<IVCE);
/* Move interrupts to boot Flash section */

GICR = (1<<IVSEL);

| /ltmeL

2486AA-AVR-02/2013

50

| ATmega8(L)

I/0 Ports

Introduction All AVR ports have true Read-Modify-Write functionality when used as general digital 1/0O ports.
This means that the direction of one port pin can be changed without unintentionally changing
the direction of any other pin with the SBI and CBI instructions. The same applies when chang-
ing drive value (if configured as output) or enabling/disabling of pull-up resistors (if configured as
input). Each output buffer has symmetrical drive characteristics with both high sink and source
capability. The pin driver is strong enough to drive LED displays directly. All port pins have indi-
vidually selectable pull-up resistors with a supply-voltage invariant resistance. All I/0 pins have
protection diodes to both V¢ and Ground as indicated in Figure 21. Refer to “Electrical Charac-
teristics — TA = -40°C to 85°C” on page 235 for a complete list of parameters.

Figure 21. I/O Pin Equivalent Schematic

Logic

See Figure
"General Digital /0" for
Details

All registers and bit references in this section are written in general form. A lower case “x” repre-
sents the numbering letter for the port, and a lower case “n” represents the bit number. However,
when using the register or bit defines in a program, the precise form must be used (that is,
PORTB3 for bit 3 in Port B, here documented generally as PORTxn). The physical /0O Registers
and bit locations are listed in “Register Description for I/O Ports” on page 65.

Three 1/0 memory address locations are allocated for each port, one each for the Data Register
— PORTYX, Data Direction Register — DDRXx, and the Port Input Pins — PINx. The Port Input Pins
I/0 location is read only, while the Data Register and the Data Direction Register are read/write.
In addition, the Pull-up Disable — PUD bit in SFIOR disables the pull-up function for all pins in all
ports when set.

Using the I/O port as General Digital I/O is described in “Ports as General Digital I/0” . Most port
pins are multiplexed with alternate functions for the peripheral features on the device. How each
alternate function interferes with the port pin is described in “Alternate Port Functions” on page
56. Refer to the individual module sections for a full description of the alternate functions.

Note that enabling the alternate function of some of the port pins does not affect the use of the
other pins in the port as general digital I/O.

| /| t m eL 51
2486AA-AVR-02/2013

ATmega8(L)

Ports as General The ports are bi-directional 1/0 ports with optional internal pull-ups. Figure 22 on page 52 shows
Digital I/O a functional description of one I/O port pin, here generically called Pxn.

Figure 22. General Digital /0"

|>_o<} @ PUD

wn
D
A1 a
P D
o \l PORTxn 4 <
T <1 I<TZ
T WPx (@]
RESET
SLEEP l\h RRx
I/
SYNCHRONIZER
| —————— RPx
o—]> b al—J0o a || :
|~ | PINxn | -
| ’7 L Q J’> a |
| ' olk
______ T 110
- WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,o: 170 CLOCK RRx: READ PORTX REGISTER
RPx: READ PORTx PIN

Note: 1. WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clk;,o, SLEEP,
and PUD are common to all ports

Configuring the Pin Each port pin consists of 3 Register bits: DDxn, PORTxn, and PINxn. As shown in “Register
Description for 1/0 Ports” on page 65, the DDxn bits are accessed at the DDRXx I/O address, the
PORTxn bits at the PORTx I/O address, and the PINxn bits at the PINx I/O address.

The DDxn bit in the DDRx Register selects the direction of this pin. If DDxn is written logic one,
Pxn is configured as an output pin. If DDxn is written logic zero, Pxn is configured as an input

pin.

If PORTxn is written logic one when the pin is configured as an input pin, the pull-up resistor is
activated. To switch the pull-up resistor off, PORTxn has to be written logic zero or the pin has to
be configured as an output pin. The port pins are tri-stated when a reset condition becomes
active, even if no clocks are running.

If PORTxn is written logic one when the pin is configured as an output pin, the port pin is driven
high (one). If PORTxn is written logic zero when the pin is configured as an output pin, the port
pin is driven low (zero).

| /| t m eL 52
2486AA-AVR-02/2013

| ATmega8(L)

Reading the Pin Value

When switching between tri-state ({DDxn, PORTxn} = 0b00) and output high ({DDxn, PORTxn}
= 0b11), an intermediate state with either pull-up enabled ({DDxn, PORTxn} = 0b01) or output
low ({DDxn, PORTxn} = O0b10) must occur. Normally, the pull-up enabled state is fully accept-
able, as a high-impedant environment will not notice the difference between a strong high driver
and a pull-up. If this is not the case, the PUD bit in the SFIOR Register can be set to disable all
pull-ups in all ports.

Switching between input with pull-up and output low generates the same problem. The user
must use either the tri-state ({DDxn, PORTxn} = 0b00) or the output high state ({DDxn, PORTxn}
=0b11) as an intermediate step.

Table 20 summarizes the control signals for the pin value.
Table 20. Port Pin Configurations

DDxn | PORTxn | (in I;llill:z)F{) /0 Pull-up | Comment
0 0 X Input No Tri-state (Hi-2)
0 1 0 Input Yes E;(Irrev(\j/i:lojvc.:urce current if external
0 1 1 Input No Tri-state (Hi-2)
1 0 X Output No Output Low (Sink)
1 1 X Output No Output High (Source)

Independent of the setting of Data Direction bit DDxn, the port pin can be read through the
PINxn Register Bit. As shown in Figure 22 on page 52, the PINxn Register bit and the preceding
latch constitute a synchronizer. This is needed to avoid metastability if the physical pin changes
value near the edge of the internal clock, but it also introduces a delay. Figure 23 shows a timing
diagram of the synchronization when reading an externally applied pin value. The maximum and
minimum propagation delays are denoted t,y max @and tog min, respectively.

Figure 23. Synchronization when Reading an Externally Applied Pin Value

SYSTEM CLK

INSTRUCTIONS XXX XXX in r17, PINx
SYNC LATCH v
PINXn ' |
r17 OxOOé OxFF
‘ tpd, max ‘
tpd, min
e >

Consider the clock period starting shortly after the first falling edge of the system clock. The latch
is closed when the clock is low, and goes transparent when the clock is high, as indicated by the
shaded region of the “SYNC LATCH?” signal. The signal value is latched when the system clock

| AtmeL 53

2486AA-AVR-02/2013

| ATmega8(L)

goes low. It is clocked into the PINxn Register at the succeeding positive clock edge. As indi-
cated by the two arrows tyq max and tog min, @ single signal transition on the pin will be delayed
between 2 and 1-2 system clock period depending upon the time of assertion.

When reading back a software assigned pin value, a nop instruction must be inserted as indi-
cated in Figure 24. The out instruction sets the “SYNC LATCH?” signal at the positive edge of the
clock. In this case, the delay t,4 through the synchronizer is 1 system clock period.

Figure 24. Synchronization when Reading a Software Assigned Pin Value

SYSTEM CLK

r16 : OxFF

INSTRUCTIONS out PORTX, r16 >< nop >< in r17, PINX

SYNC LATCH

PINxn

r17 0x00 : X oxFF

pd

| /ltmeL 54

2486AA-AVR-02/2013

| ATmega8(L)

The following code example shows how to set port B pins 0 and 1 high, 2 and 3 low, and define
the port pins from 4 to 7 as input with pull-ups assigned to port pins 6 and 7. The resulting pin
values are read back again, but as previously discussed, a nop instruction is included to be able
to read back the value recently assigned to some of the pins.

Assembly Code Example"

; Define pull-ups and set outputs high

; Define directions for port pins

1di rl16, (1<<PB7) | (1<<PB6) | (1<<PB1) | (1<<PBO0)

1di 1r17, (1<<DDB3) | (1<<DDB2) | (1<<DDB1) | (1<<DDBO)
out PORTB,rl6

out DDRB,rl7

; Insert nop for synchronization

nop

; Read port pins

in rl6, PINB

C Code Example"

unsigned char i;

/* Define pull-ups and set outputs high */

/* Define directions for port pins */

PORTB = (1<<PB7) | (1<<PB6) | (1<<PBl) | (1<<PBO) ;
DDRB = (1<<DDB3) | (1<<DDB2) | (1<<DDB1) | (1<<DDBO) ;
/* Insert nop for synchronization*/

_NOP () ;

/* Read port pins */

i = PINB;

Note: 1. For the assembly program, two temporary registers are used to minimize the time from pull-
ups are set on pins 0, 1, 6, and 7, until the direction bits are correctly set, defining bit 2 and 3
as low and redefining bits 0 and 1 as strong high drivers

Digital Input Enable As shown in Figure 22 on page 52, the digital input signal can be clamped to ground at the input
and Sleep Modes of the Schmitt-trigger. The signal denoted SLEEP in the figure, is set by the MCU Sleep Control-
ler in Power-down mode, Power-save mode, and Standby mode to avoid high power
consumption if some input signals are left floating, or have an analog signal level close to V/2.

SLEEP is overridden for port pins enabled as External Interrupt pins. If the External Interrupt
Request is not enabled, SLEEP is active also for these pins. SLEEP is also overridden by vari-
ous other alternate functions as described in “Alternate Port Functions” on page 56.

If a logic high level (“one”) is present on an Asynchronous External Interrupt pin configured as
“Interrupt on Rising Edge, Falling Edge, or Any Logic Change on Pin” while the external interrupt
is not enabled, the corresponding External Interrupt Flag will be set when resuming from the
above mentioned sleep modes, as the clamping in these sleep modes produces the requested
logic change.

| AtmeL 55

2486AA-AVR-02/2013

| ATmega8(L)

Unconnected pins

Alternate Port

If some pins are unused, it is recommended to ensure that these pins have a defined level. Even
though most of the digital inputs are disabled in the deep sleep modes as described above, float-
ing inputs should be avoided to reduce current consumption in all other modes where the digital
inputs are enabled (Reset, Active mode and Idle mode).

The simplest method to ensure a defined level of an unused pin, is to enable the internal pull-up.
In this case, the pull-up will be disabled during reset. If low power consumption during reset is
important, it is recommended to use an external pull-up or pull-down. Connecting unused pins
directly to Vo or GND is not recommended, since this may cause excessive currents if the pin is
accidentally configured as an output.

Most port pins have alternate functions in addition to being general digital I/Os. Figure 25 shows

Functions how the port pin control signals from the simplified Figure 22 on page 52 can be overridden by
alternate functions. The overriding signals may not be present in all port pins, but the figure
serves as a generic description applicable to all port pins in the AVR microcontroller family.
Figure 25. Alternate Port Functions")

PUOExn A
PUOVxn
PUD
DDOEXxn
L DDOVxn
§ 1
] 0f
PVOExn
PVOVxn
n
J }1 R
Pxn
~ N <
=
DIEOExn al &)
1 RRx
SLEEP [:
SYNCHRONIZER
ﬂ {>
= » Dixn
4 AlOxn
PUOExn: Pxn PULL-UP OVERRIDE ENABLE PUD: PULLUP DISABLE v
PUOVxn: Pxn PULL-UP OVERRIDE VALUE WDx: WRITE DDRx
DDOExn: Pxn DATA DIRECTION OVERRIDE ENABLE RDx: READ DDRx
DDOVxn: Pxn DATA DIRECTION OVERRIDE VALUE RRx: READ PORTx REGISTER
PVOExn: Pxn PORT VALUE OVERRIDE ENABLE WPx: WRITE PORTx
PVOVxn: Pxn PORT VALUE OVERRIDE VALUE RPx: READ PORTx PIN
DIEOExn: Pxn DIGITAL INPUT-ENABLE OVERRIDE ENABLE clkyo: 110 CLOCK
DIEOVxn: Pxn DIGITAL INPUT-ENABLE OVERRIDE VALUE Dixn: DIGITAL INPUT PIN n ON PORTx
SLEEP: SLEEP CONTROL AlOxn: ANALOG INPUT/OUTPUT PIN n ON PORTX
Note: 1. WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clk;,o, SLEEP,
and PUD are common to all ports. All other signals are unique for each pin
|
Atmel 56

2486AA-AVR-02/2013

| ATmega8(L)

Table 21 summarizes the function of the overriding signals. The pin and port indexes from Fig-
ure 25 on page 56 are not shown in the succeeding tables. The overriding signals are generated
internally in the modules having the alternate function.

Table 21. Generic Description of Overriding Signals for Alternate Functions

Signal Name

Full Name

Description

PUCE

Pull-up Override
Enable

If this signal is set, the pull-up enable is controlled by
the PUQV signal. If this signal is cleared, the pull-up is
enabled when {DDxn, PORTxn, PUD} = 0b010.

PUOV Pull-up Override If PUOE is set, the pull-up is enabled/disabled when
Value PUOV is set/cleared, regardless of the setting of the
DDxn, PORTxn, and PUD Register bits.
DDOE Data Direction If this signal is set, the Output Driver Enable is
Override Enable controlled by the DDOV signal. If this signal is cleared,
the Output driver is enabled by the DDxn Register bit.

DDOV Data Direction If DDOE is set, the Output Driver is enabled/disabled

Override Value when DDOV is set/cleared, regardless of the setting of
the DDxn Register bit.

PVOE Port Value If this signal is set and the Output Driver is enabled,

Override Enable the port value is controlled by the PVOV signal. If
PVOE is cleared, and the Output Driver is enabled, the
port Value is controlled by the PORTxn Register bit.

PVOV Port Value If PVOE is set, the port value is set to PVOV,

Override Value regardless of the setting of the PORTxn Register bit.

DIEOE Digital Input Enable If this bit is set, the Digital Input Enable is controlled by

Override Enable the DIEQV signal. If this signal is cleared, the Digital
Input Enable is determined by MCU-state (Normal
mode, sleep modes).

DIEOV Digital Input Enable If DIEOE is set, the Digital Input is enabled/disabled

Override Value when DIEQV is set/cleared, regardless of the MCU
state (Normal mode, sleep modes).

DI Digital Input This is the Digital Input to alternate functions. In the
figure, the signal is connected to the output of the
schmitt trigger but before the synchronizer. Unless the
Digital Input is used as a clock source, the module with
the alternate function will use its own synchronizer.

AlO Analog Input/output | This is the Analog Input/output to/from alternate

functions. The signal is connected directly to the pad,
and can be used bi-directionally.

The following subsections shortly describe the alternate functions for each port, and relate the
overriding signals to the alternate function. Refer to the alternate function description for further

details.

| /ltmeL

2486AA-AVR-02/2013

57

| ATmega8(L)

Special Function 10

Register — SFIOR Bit 7 5 5 4 3 2 L 0
| ACME PUD PSR2 | PSR10 | SFIOR
Read/Write R R R R R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 2 — PUD: Pull-up Disable

When this bit is written to one, the pull-ups in the 1/O ports are disabled even if the DDxn and
PORTxn Registers are configured to enable the pull-ups ({DDxn, PORTxn} = 0b01). See “Con-
figuring the Pin” on page 52 for more details about this feature.

Alternate Functions of The Port B pins with alternate functions are shown in Table 22.

Port B
Table 22. Port B Pins Alternate Functions

Port Pin Alternate Functions

XTAL2 (Chip Clock Oscillator pin 2)
TOSC2 (Timer Oscillator pin 2)

PB7

XTAL1 (Chip Clock Oscillator pin 1 or External clock input)
TOSC1 (Timer Oscillator pin 1)

PB5 SCK (SPI Bus Master clock Input)
PB4 MISO (SPI Bus Master Input/Slave Output)

MOSI (SPI Bus Master Output/Slave Input)
OC2 (Timer/Counter2 Output Compare Match Output)

SS (SPI Bus Master Slave select)
OC1B (Timer/Counter1 Output Compare Match B Output)

PB1 OC1A (Timer/Counter1 Output Compare Match A Output)
PBO ICP1 (Timer/Counter1 Input Capture Pin)

PB6

PB3

PB2

The alternate pin configuration is as follows:
e XTAL2/TOSC2 - Port B, Bit 7

XTAL2: Chip clock Oscillator pin 2. Used as clock pin for crystal Oscillator or Low-frequency
crystal Oscillator. When used as a clock pin, the pin can not be used as an I/O pin.

TOSC2: Timer Oscillator pin 2. Used only if internal calibrated RC Oscillator is selected as chip
clock source, and the asynchronous timer is enabled by the correct setting in ASSR. When the
AS2 bit in ASSR is set (one) to enable asynchronous clocking of Timer/Counter2, pin PB7 is dis-
connected from the port, and becomes the inverting output of the Oscillator amplifier. In this
mode, a crystal Oscillator is connected to this pin, and the pin cannot be used as an I/O pin.

If PB7 is used as a clock pin, DDB7, PORTB7 and PINB7 will all read 0.
e XTAL1/TOSC1 - Port B, Bit 6

XTALT1: Chip clock Oscillator pin 1. Used for all chip clock sources except internal calibrated RC
Oscillator. When used as a clock pin, the pin can not be used as an 1/O pin.

TOSCH1: Timer Oscillator pin 1. Used only if internal calibrated RC Oscillator is selected as chip
clock source, and the asynchronous timer is enabled by the correct setting in ASSR. When the
AS2 bit in ASSR is set (one) to enable asynchronous clocking of Timer/Counter2, pin PB6 is dis-
connected from the port, and becomes the input of the inverting Oscillator amplifier. In this
mode, a crystal Oscillator is connected to this pin, and the pin can not be used as an I/O pin.

If PB6 is used as a clock pin, DDB6, PORTB6 and PINB6 will all read 0.

| /| t m eL 58
2486AA-AVR-02/2013

| ATmega8(L)

e SCK-PortB, Bit5

SCK: Master Clock output, Slave Clock input pin for SPI channel. When the SPI is enabled as a
Slave, this pin is configured as an input regardless of the setting of DDB5. When the SPI is
enabled as a Master, the data direction of this pin is controlled by DDB5. When the pin is forced
by the SPI to be an input, the pull-up can still be controlled by the PORTB5 bit.

* MISO - Port B, Bit 4

MISO: Master Data input, Slave Data output pin for SPI channel. When the SPI is enabled as a
Master, this pin is configured as an input regardless of the setting of DDB4. When the SPI is
enabled as a Slave, the data direction of this pin is controlled by DDB4. When the pin is forced
by the SPI to be an input, the pull-up can still be controlled by the PORTB4 bit.

* MOSI/OC2 - Port B, Bit 3

MOSI: SPI Master Data output, Slave Data input for SPI channel. When the SPI is enabled as a
Slave, this pin is configured as an input regardless of the setting of DDB3. When the SPI is
enabled as a Master, the data direction of this pin is controlled by DDB3. When the pin is forced
by the SPI to be an input, the pull-up can still be controlled by the PORTBS bit.

0OC2, Output Compare Match Output: The PB3 pin can serve as an external output for the
Timer/Counter2 Compare Match. The PB3 pin has to be configured as an output (DDBS3 set
(one)) to serve this function. The OC2 pin is also the output pin for the PWM mode timer
function.

e SS/OC1B - Port B, Bit 2

SS: Slave Select input. When the SPI is enabled as a Slave, this pin is configured as an input
regardless of the setting of DDB2. As a Slave, the SPI is activated when this pin is driven low.
When the SPI is enabled as a Master, the data direction of this pin is controlled by DDB2. When
the pin is forced by the SPI to be an input, the pull-up can still be controlled by the PORTB2 bit.

OC1B, Output Compare Match output: The PB2 pin can serve as an external output for the
Timer/Counter1i Compare Match B. The PB2 pin has to be configured as an output (DDB2 set
(one)) to serve this function. The OC1B pin is also the output pin for the PWM mode timer
function.

* OC1A -PortB, Bit 1

OC1A, Output Compare Match output: The PB1 pin can serve as an external output for the
Timer/Counter1 Compare Match A. The PB1 pin has to be configured as an output (DDB1 set
(one)) to serve this function. The OC1A pin is also the output pin for the PWM mode timer
function.

e ICP1-PortB, Bit0
ICP1 — Input Capture Pin: The PBO pin can act as an Input Capture Pin for Timer/Counter1.

Table 23 on page 60 and Table 24 on page 60 relate the alternate functions of Port B to the
overriding signals shown in Figure 25 on page 56. SPI MSTR INPUT and SPI SLAVE OUTPUT
constitute the MISO signal, while MOSI is divided into SPI MSTR OUTPUT and SPI SLAVE
INPUT.

| /ltmeL 59

2486AA-AVR-02/2013

| ATmega8(L)

Table 23. Overriding Signals for Alternate Functions in PB7..PB4
Signal | PB7/XTAL2/ PB6/XTAL1/
Name | TOSC2(V® TOosc1 PB5/SCK PB4/MISO
PUOE | EXT ¢ (INTRC + INTRC + AS2 SPE ¢« MSTR SPE « MSTR
AS2)
PUO 0 0 PORTB5« PUD | PORTB4 « PUD
DDOE | EXT«(INTRC + | INTRC + AS2 SPE « MSTR SPE « MSTR
AS2)
DDOV | 0 0 0 0
PVOE 0 0 SPE « MSTR SPE « MSTR
PVOV 0 0 SCK OUTPUT SPI SLAVE OUTPUT
DIEOE | EXT «(INTRC + | INTRC +AS2 0 0
AS2)
DIEQV | O 0 0 0
DI - - SCK INPUT SPI MSTR INPUT
AlO Oscillator Output | Oscillator/Clock - -
Input
Notes: 1. INTRC means that the internal RC Oscillator is selected (by the CKSEL Fuse)
2. EXT means that the external RC Oscillator or an external clock is selected (by the CKSEL
Fuse)
Table 24. Overriding Signals for Alternate Functions in PB3..PBO
Signal
Name | PB3/MOSI/OC2 PB2/SS/OC1B | PB1/OC1A PBO/ICP1
PUOE SPE ¢« MSTR SPE « MSTR 0 0
PUO PORTB3 « PUD PORTB2PUD | O 0
DDOE SPE « MSTR SPE « MSTR 0 0
DDOV 0 0 0 0
PVOE SPE « MSTR + OC1B ENABLE | OC1A ENABLE | 0
OC2 ENABLE
PVOV SPI MSTR OUTPUT + OC2 | OC1B OC1A 0
DIEOE | 0 0 0 0
DIEOQV | 0 0 0 0
DI SPI SLAVE INPUT SPISS - ICP1 INPUT
AlO - - - -

| /ltmeL

2486AA-AVR-02/2013

60

| ATmega8(L)

Alternate Functions of The Port C pins with alternate functions are shown in Table 25.

Port C
Table 25. Port C Pins Alternate Functions
Port Pin Alternate Function
PC6 RESET (Reset pin)
PC5 ADCS5 (ADC Input Channel 5)
SCL (Two-wire Serial Bus Clock Line)
PC4 ADC4 (ADC Input Channel 4)
SDA (Two-wire Serial Bus Data Input/Output Line)

PC3 ADC3 (ADC Input Channel 3)

PC2 ADC2 (ADC Input Channel 2)

PC1 ADC1 (ADC Input Channel 1)

PCO ADCO (ADC Input Channel 0)
The alternate pin configuration is as follows:
e RESET - Port C, Bit 6
RESET, Reset pin: When the RSTDISBL Fuse is programmed, this pin functions as a normal I/O
pin, and the part will have to rely on Power-on Reset and Brown-out Reset as its reset sources.
When the RSTDISBL Fuse is unprogrammed, the reset circuitry is connected to the pin, and the
pin can not be used as an 1/O pin.
If PC6 is used as a reset pin, DDC6, PORTC6 and PINC6 will all read 0.
e SCL/ADC5 - Port C, Bit5
SCL, Two-wire Serial Interface Clock: When the TWEN bit in TWCR is set (one) to enable the
Two-wire Serial Interface, pin PC5 is disconnected from the port and becomes the Serial Clock
I/0 pin for the Two-wire Serial Interface. In this mode, there is a spike filter on the pin to sup-
press spikes shorter than 50 ns on the input signal, and the pin is driven by an open drain driver
with slew-rate limitation.
PCS5 can also be used as ADC input Channel 5. Note that ADC input channel 5 uses digital
power.
e SDA/ADCA4 - Port C, Bit 4
SDA, Two-wire Serial Interface Data: When the TWEN bit in TWCR is set (one) to enable the
Two-wire Serial Interface, pin PC4 is disconnected from the port and becomes the Serial Data
I/0 pin for the Two-wire Serial Interface. In this mode, there is a spike filter on the pin to sup-
press spikes shorter than 50 ns on the input signal, and the pin is driven by an open drain driver
with slew-rate limitation.
PC4 can also be used as ADC input Channel 4. Note that ADC input channel 4 uses digital
power.
e ADC3-PortC,Bit3
PC3 can also be used as ADC input Channel 3. Note that ADC input channel 3 uses analog
power.
e ADC2 - Port C, Bit 2
PC2 can also be used as ADC input Channel 2. Note that ADC input channel 2 uses analog
power.

| Atme[61

2486AA-AVR-02/2013

| ATmega8(L)

* ADC1 -Port C, Bit 1

PC1 can also be used as ADC input Channel 1. Note that ADC input channel 1 uses analog

power.

e ADCO-PortC,Bit0
PCO can also be used as ADC input Channel 0. Note that ADC input channel 0 uses analog

power.

Table 26 and Table 27 relate the alternate functions of Port C to the overriding signals shown in
Figure 25 on page 56.

Table 26. Overriding Signals for Alternate Functions in PC6..PC4
Signal Name | PC6/RESET PC5/SCL/ADC5 PC4/SDA/ADC4
PUOE RSTDISBL TWEN TWEN
PUOV 1 PORTC5 « PUD PORTC4 « PUD
DDOE RSTDISBL TWEN TWEN
DDOV 0 SCL_OouT SDA_OUT
PVOE 0 TWEN TWEN
PVOV 0 0 0
DIEOE RSTDISBL 0 0
DIEOV 0 0 0
DI - - -
AIO RESET INPUT | ADC5 INPUT / SCL INPUT | ADC4 INPUT / SDA INPUT

Table 27. Overriding Signals for Alternate Functions in PC3..PC0!")

Signal Name

PC3/ADC3

PC2/ADC2

PC1/ADC1

PCO/ADCO

PUOE

PUOV

DDOE

DDOV

PVOE

PVOV

DIEOE

DIEOV

oOjlojlojlo/lo|o|o|o

oOjojojo/lo|o|o|o
oOjlojojlo/lo|o|o|o

oOjlojojo/lo|o|o|o

DI

AIO

ADCS3 INPUT

ADC2 INPUT

ADC1 INPUT

ADCO INPUT

Note: 1. When enabled, the Two-wire Serial Interface

enables slew-rate controls on the output pins

PC4 and PC5. This is not shown in the figure. In addition, spike filters are connected between
the AlO outputs shown in the port figure and the digital logic of the TWI module

| /ltmeL

2486AA-AVR-02/2013

62

| ATmega8(L)

Alternate Functions of The Port D pins with alternate functions are shown in Table 28.

Port D
Table 28. Port D Pins Alternate Functions
Port Pin Alternate Function

PD7 AIN1 (Analog Comparator Negative Input)

PD6 AINO (Analog Comparator Positive Input)

PD5 T1 (Timer/Counter 1 External Counter Input)

PD4 XCK (USART External Clock Input/Output)

TO (Timer/Counter 0 External Counter Input)

PD3 INT1 (External Interrupt 1 Input)

PD2 INTO (External Interrupt 0 Input)

PD1 TXD (USART Output Pin)

PDO RXD (USART Input Pin)
The alternate pin configuration is as follows:
e AIN1 - Port D, Bit 7
AIN1, Analog Comparator Negative Input. Configure the port pin as input with the internal pull-up
switched off to avoid the digital port function from interfering with the function of the Analog
Comparator.
e AINO - Port D, Bit 6
AINO, Analog Comparator Positive Input. Configure the port pin as input with the internal pull-up
switched off to avoid the digital port function from interfering with the function of the Analog
Comparator.
e T1-PortD, Bit5
T1, Timer/Counter1 counter source.
e XCK/TO - Port D, Bit 4
XCK, USART external clock.
TO, Timer/Counter0O counter source.
e INT1 - Port D, Bit 3
INT1, External Interrupt source 1: The PD3 pin can serve as an external interrupt source.
¢ INTO - Port D, Bit 2
INTO, External Interrupt source 0: The PD2 pin can serve as an external interrupt source.
e TXD - Port D, Bit 1
TXD, Transmit Data (Data output pin for the USART). When the USART Transmitter is enabled,
this pin is configured as an output regardless of the value of DDD1.
e RXD - Port D, Bit 0
RXD, Receive Data (Data input pin for the USART). When the USART Receiver is enabled this
pin is configured as an input regardless of the value of DDDO0. When the USART forces this pin
to be an input, the pull-up can still be controlled by the PORTDO bit.
Table 29 on page 64 and Table 30 on page 64 relate the alternate functions of Port D to the
overriding signals shown in Figure 25 on page 56.

| Atme[63

2486AA-AVR-02/2013

| ATmega8(L)

Table 29. Overriding Signals for Alternate Functions PD7..PD4

Signal Name PD7/AIN1 PD6/AINO PD5/T1 PD4/XCK/TO
PUOE 0 0 0 0

PUO 0 0 0 0

OOE 0 0 0 0

0]0) 0 0 0 0

PVOE 0 0 0 UMSEL

PVO 0 0 0 XCK OUTPUT
DIEOE 0 0 0 0

DIEO 0 0 0 0

DI - - T1 INPUT | XCKINPUT/TO INPUT
AIO AIN1 INPUT AINO INPUT - -

Table 30. Overriding Signals for Alternate Functions in PD3..PDO

Signal Name | PD3/INT1 PD2/INTO PD1/TXD | PDO/RXD
PUOE 0 0 TXEN RXEN

PUO 0 0 0 PORTDO « PUD
OOE 0 0 TXEN RXEN

00 0 0 1 0

PVOE 0 0 TXEN 0

PVO 0 0 TXD 0

DIEOE INT1 ENABLE | INTO ENABLE | 0 0

DIEO 1 1 0 0

DI INT1 INPUT INTO INPUT - RXD

AIO - - - -

| /ltmeL

2486AA-AVR-02/2013

64

| ATmega8(L)

Register Description for I1/0 Ports

The Port B Data

Register —- PORTB Bit U 5 5 4 3 2 ! 0
I PORTB7 | PORTB6 | PORTB5 | PORTB4 | PORTB3 | PORTB2 | PORTB1 PORTBO I PORTB
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

The Port B Data

Direction Register — Bit U 5 5 4 3 2 ! 0

DDRB I DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDBO0 I DDRB
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

The Port B Input Pins

Address — PINB Bit 7 6 5 4 3 2 1 0
I PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINBO I PINB

Read/Write R R R R R R R R

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

The Port C Data

Register - PORTC Bit 7 6 5 4 3 2 1 0
I - PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTCO I PORTC
Read/Write R R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

The Port C Data

Direction Register — Bit U 5 > 4 3 2 ! 0

DDRC I - DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDCO | DDRC
Read/Write R R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

The Port C Input Pins

Address — PINC Bit 7 6 5 4 3 2 1 0
I - PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINCO I PINC

Read/Write R R R R R R R R

Initial Value 0 N/A N/A N/A N/A N/A N/A N/A

The Port D Data

Register — PORTD Bit 7 6 5 4 3 2 1 0
| PorRTD7 | PORTD6 | PORTDS | PORTD4 | PORTD3 | PORTD2 | PORTD1 [PORTDO | PORTD
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

The Port D Data

Direction Register — L 7 6 5 4 3 2 ! 0
DDRD | poo7 DDD6 DDD5 | DDD4 | DDD3 DDD2 DDD1 pbbo | DDRD
Read/Write RIW RIW RIW RIW RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0
The Port D Input Pins
Address — PIND Bit ’ 5 5 4 3 2 ! 0
| PiND7 | PINDe | PIND5 | PIND4 | PIND3 | PIND2 | PIND1 | PINDO | PIND
Read/Write R R R R R R R R
Initial Value N/A N/A N/A N/A N/A N/A N/A N/A
| AtmeL 65

2486AA-AVR-02/2013

| ATmega8(L)

External
Interrupts

MCU Control Register
- MCUCR

The external interrupts are triggered by the INTO, and INT1 pins. Observe that, if enabled, the
interrupts will trigger even if the INTO..1 pins are configured as outputs. This feature provides a
way of generating a software interrupt. The external interrupts can be triggered by a falling or ris-
ing edge or a low level. This is set up as indicated in the specification for the MCU Control
Register - MCUCR. When the external interrupt is enabled and is configured as level triggered,
the interrupt will trigger as long as the pin is held low. Note that recognition of falling or rising
edge interrupts on INTO and INT1 requires the presence of an I/O clock, described in “Clock
Systems and their Distribution” on page 25. Low level interrupts on INTO/INT1 are detected
asynchronously. This implies that these interrupts can be used for waking the part also from
sleep modes other than Idle mode. The I/O clock is halted in all sleep modes except Idle mode.

Note that if a level triggered interrupt is used for wake-up from Power-down mode, the changed
level must be held for some time to wake up the MCU. This makes the MCU less sensitive to
noise. The changed level is sampled twice by the Watchdog Oscillator clock. The period of the
Watchdog Oscillator is 1 ps (nominal) at 5.0V and 25°C. The frequency of the Watchdog Oscilla-
tor is voltage dependent as shown in “Electrical Characteristics — TA = -40°C to 85°C” on page
235. The MCU will wake up if the input has the required level during this sampling or if it is held
until the end of the start-up time. The start-up time is defined by the SUT Fuses as described in
“System Clock and Clock Options” on page 25. If the level is sampled twice by the Watchdog
Oscillator clock but disappears before the end of the start-up time, the MCU will still wake up, but
no interrupt will be generated. The required level must be held long enough for the MCU to com-
plete the wake up to trigger the level interrupt.

The MCU Control Register contains control bits for interrupt sense control and general MCU
functions.

Bit 7 6 5 4 3 2 1 0

I SE SM2 SM1 SMo ISC11 ISC10 1ISCo1 1ISC00 I MCUCR
Read/Write R/W R/W R/W R/W R/IW R/IW R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 3,2 -1SC11, ISC10: Interrupt Sense Control 1 Bit 1 and Bit 0

The External Interrupt 1 is activated by the external pin INT1 if the SREG I-bit and the corre-
sponding interrupt mask in the GICR are set. The level and edges on the external INT1 pin that
activate the interrupt are defined in Table 31. The value on the INT1 pin is sampled before
detecting edges. If edge or toggle interrupt is selected, pulses that last longer than one clock
period will generate an interrupt. Shorter pulses are not guaranteed to generate an interrupt. If
low level interrupt is selected, the low level must be held until the completion of the currently
executing instruction to generate an interrupt.

Table 31. Interrupt 1 Sense Control

ISC11 ISC10 | Description
0 0 The low level of INT1 generates an interrupt request
0 1 Any logical change on INT1 generates an interrupt request
1 0 The falling edge of INT1 generates an interrupt request
1 1 The rising edge of INT1 generates an interrupt request
| AtmeL 66

2486AA-AVR-02/2013

| ATmega8(L)

e Bit1,0-1SCO01, ISCO00: Interrupt Sense Control 0 Bit 1 and Bit 0

The External Interrupt 0 is activated by the external pin INTO if the SREG I-flag and the corre-
sponding interrupt mask are set. The level and edges on the external INTO pin that activate the
interrupt are defined in Table 32. The value on the INTO pin is sampled before detecting edges.
If edge or toggle interrupt is selected, pulses that last longer than one clock period will generate
an interrupt. Shorter pulses are not guaranteed to generate an interrupt. If low level interrupt is
selected, the low level must be held until the completion of the currently executing instruction to
generate an interrupt.

Table 32. Interrupt 0 Sense Control

ISCo1 ISC00 | Description
0 0 The low level of INTO generates an interrupt request
0 1 Any logical change on INTO generates an interrupt request
1 0 The falling edge of INTO generates an interrupt request
1 1 The rising edge of INTO generates an interrupt request
General Interrupt
Control Register — Bit U 6 S 4 3 2 ! 0
GICR | INT1 INTO - - IVSEL IVCE | GICR
Read/Write R/W RIW R R R R R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7 — INT1: External Interrupt Request 1 Enable

When the INT1 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), the exter-
nal pin interrupt is enabled. The Interrupt Sense Control1 bits 1/0 (ISC11 and ISC10) in the MCU
general Control Register (MCUCR) define whether the external interrupt is activated on rising
and/or falling edge of the INT1 pin or level sensed. Activity on the pin will cause an interrupt
request even if INT1 is configured as an output. The corresponding interrupt of External Interrupt
Request 1 is executed from the INT1 Interrupt Vector.

¢ Bit 6 — INTO: External Interrupt Request 0 Enable

When the INTO bit is set (one) and the I-bit in the Status Register (SREG) is set (one), the exter-
nal pin interrupt is enabled. The Interrupt Sense Control0 bits 1/0 (ISC01 and ISC00) in the MCU
general Control Register (MCUCR) define whether the external interrupt is activated on rising
and/or falling edge of the INTO pin or level sensed. Activity on the pin will cause an interrupt
request even if INTO is configured as an output. The corresponding interrupt of External Interrupt
Request 0 is executed from the INTO Interrupt Vector.

General Interrupt Flag

Register — GIFR Bit 7 6 5 4 3 2 ! 0
| INTF1 INTFO = = = = = = | GIFR

Read/Write R/W R/W R R R R R R

Initial Value 0 0 0 0 0 0 0 0

e Bit 7 — INTF1: External Interrupt Flag 1

When an event on the INT1 pin triggers an interrupt request, INTF1 becomes set (one). If the I-
bit in SREG and the INT1 bit in GICR are set (one), the MCU will jump to the corresponding
Interrupt Vector. The flag is cleared when the interrupt routine is executed. Alternatively, the flag
can be cleared by writing a logical one to it. This flag is always cleared when INT1 is configured
as a level interrupt.

| /| t m eL 67
2486AA-AVR-02/2013

s A TMega8(L)

¢ Bit 6 — INTFO: External Interrupt Flag 0

When an event on the INTO pin triggers an interrupt request, INTFO becomes set (one). If the I-
bit in SREG and the INTO bit in GICR are set (one), the MCU will jump to the corresponding
Interrupt Vector. The flag is cleared when the interrupt routine is executed. Alternatively, the flag
can be cleared by writing a logical one to it. This flag is always cleared when INTO is configured
as a level interrupt.

| AtmeL 68

2486AA-AVR-02/2013

| ATmega8(L)

8-bit Timer/Counter0 is a general purpose, single channel, 8-bit Timer/Counter module. The main
: features are:
Timer/Counter0 ¢ Single Channel Counter
* Frequency Generator
¢ External Event Counter
* 10-bit Clock Prescaler
Overview A simplified block diagram of the 8-bit Timer/Counter is shown in Figure 26. For the actual place-
ment of I/O pins, refer to “Pin Configurations” on page 2. CPU accessible 1/0 Registers,
including 1/O bits and /O pins, are shown in bold. The device-specific I/O Register and bit loca-
tions are listed in the “8-bit Timer/Counter Register Description” on page 71.
Figure 26. 8-bit Timer/Counter Block Diagram
A
¢ > TCCRn |
TOVn
¢ I - (Int.Req.)
9] count Control Logic clk Clock Select
:) Tn
m Edge
}<£ Detector n
<
()]
Timer/Counter (From Prescaler)
TCNTn
= OxFF
Registers The Timer/Counter (TCNTO) is an 8-bit register. Interrupt request (abbreviated to Int. Req. in the
figure) signals are all visible in the Timer Interrupt Flag Register (TIFR). All interrupts are individ-
ually masked with the Timer Interrupt Mask Register (TIMSK). TIFR and TIMSK are not shown in
the figure since these registers are shared by other timer units.
The Timer/Counter can be clocked internally or via the prescaler, or by an external clock source
on the TO pin. The Clock Select logic block controls which clock source and edge the
Timer/Counter uses to increment its value. The Timer/Counter is inactive when no clock source
is selected. The output from the clock select logic is referred to as the timer clock (clky).
Definitions Many register and bit references in this document are written in general form. A lower case “n”
replaces the Timer/Counter number, in this case 0. However, when using the register or bit
defines in a program, the precise form must be used, that is, TCNTO for accessing
Timer/Counter0 counter value and so on.
The definitions in Table 33 are also used extensively throughout this datasheet.
Table 33. Definitions
BOTTOM | The counter reaches the BOTTOM when it becomes 0x00
MAX The counter reaches its MAXimum when it becomes 0xFF (decimal 255)
| Atme[69

2486AA-AVR-02/2013

| ATmega8(L)

Timer/Counter
Clock Sources

Counter Unit

Operation

Timer/Counter
Timing Diagrams

The Timer/Counter can be clocked by an internal or an external clock source. The clock source
is selected by the clock select logic which is controlled by the clock select (CS02:0) bits located
in the Timer/Counter Control Register (TCCRO0). For details on clock sources and prescaler, see
“Timer/Counter0 and Timer/Counter1 Prescalers” on page 73.

The main part of the 8-bit Timer/Counter is the programmable counter unit. Figure 27 shows a
block diagram of the counter and its surroundings.

Figure 27. Counter Unit Block Diagram

TOVn
DATA BUS (Int. Req.)
; Clock Select
count . Edge
TCNTn «¢—— Control Logic Sk Detector % Tn
(From Prescaler)
max
Signal description (internal signals):

count Increment TCNTO by 1

clkq, Timer/Counter clock, referred to as clky, in the following

max Signalize that TCNTO has reached maximum value

The counter is incremented at each timer clock (clkyp). clkrg can be generated from an external
or internal clock source, selected by the clock select bits (CS02:0). When no clock source is
selected (CS02:0 = 0) the timer is stopped. However, the TCNTO value can be accessed by the
CPU, regardless of whether clky, is present or not. A CPU write overrides (has priority over) all
counter clear or count operations.

The counting direction is always up (incrementing), and no counter clear is performed. The
counter simply overruns when it passes its maximum 8-bit value (MAX = 0xFF) and then restarts
from the bottom (0x00). In normal operation the Timer/Counter Overflow Flag (TOVO0) will be set
in the same timer clock cycle as the TCNTO becomes zero. The TOVO Flag in this case behaves
like a ninth bit, except that it is only set, not cleared. However, combined with the timer overflow
interrupt that automatically clears the TOVO Flag, the timer resolution can be increased by soft-
ware. A new counter value can be written anytime.

The Timer/Counter is a synchronous design and the timer clock (clky) is therefore shown as a
clock enable signal in the following figures. The figures include information on when Interrupt
Flags are set. Figure 28 on page 71 contains timing data for basic Timer/Counter operation. The
figure shows the count sequence close to the MAX value.

| AtmeL 70

2486AA-AVR-02/2013

| ATmega8(L)

8-bit

Timer/Counter

Register
Description

Timer/Counter Control
Register - TCCRO

Figure 28. Timer/Counter Timing Diagram, No Prescaling

clkI o0

clky,

(clk, /1)

TCNTn

TOVn

MAX -1

MAX

BOTTOM

BOTTOM + 1

Figure 29 shows the same timing data, but with the prescaler enabled.

Figure 29. Timer/Counter Timing Diagram, with Prescaler (f ,0/8)

[R

TR

clk,,
(clk,o/8)

:

TR

:

:

TCNTn MAX -1 MAX BOTTOM BOTTOM + 1
TOVn
Bit 7 6 5 4 3 2 1 0
| - - cs02 | cso1 CS00 | TCCRO
Read/Write R R RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0

¢ Bit 2:0 - CS02:0: Clock Select

The three clock select bits select the clock source to be used by the Timer/Counter.

| /ltmeL

2486AA-AVR-02/2013

7

| ATmega8(L)

Timer/Counter
Register - TCNTO

Timer/Counter
Interrupt Mask
Register — TIMSK

Timer/Counter
Interrupt Flag Register
- TIFR

Table 34. Clock Select Bit Description

CS02 CSo01 CS00 Description
0 0 0 No clock source (Timer/Counter stopped)
0 0 1 clkyo/(No prescaling)
0 1 0 clkyo/8 (From prescaler)
0 1 1 clk;,o/64 (From prescaler)
1 0 0 clk;,o/256 (From prescaler)
1 0 1 clkyo/1024 (From prescaler)
1 1 0 External clock source on TO pin. Clock on falling edge
1 1 1 External clock source on TO pin. Clock on rising edge

If external pin modes are used for the Timer/Counter0, transitions on the TO pin will clock the
counter even if the pin is configured as an output. This feature allows software control of the
counting.

Bit 7 6 5 4 3 2 1 0
| TCNTO[7:0] | Tento

Read/Write RIW RIW RIW R/W R/W R/W RIW R/W

Initial Value 0 0 0 0 0 0 0 0

The Timer/Counter Register gives direct access, both for read and write operations, to the
Timer/Counter unit 8-bit counter.

Bit 7 6 5 4 3 2 1 0

I OCIE2 TOIE2 TICIE1 OCIE1A | OCIE1B TOIE1 - TOIEO I TIMSK
Read/Write R/W R/W R/W R/IW R/IW R/W R/W RIW
Initial Value 0 0 0 0 0 0 0 0

e Bit 0 — TOIEO: Timer/Counter0 Overflow Interrupt Enable

When the TOIEO bit is written to one, and the I-bit in the Status Register is set (one), the
Timer/Counter0 Overflow interrupt is enabled. The corresponding interrupt is executed if an
overflow in Timer/Counter0Q occurs, that is, when the TOVO bit is set in the Timer/Counter Inter-
rupt Flag Register — TIFR.

Bit 7 6 5 4 3 2 1 0

I OCF2 TOV2 ICF1 OCF1A | OCF1B TOV1 - TOVO I TIFR
Read/Write R/W R/W R/W R/IW R/W R/W R/W R/IW
Initial Value 0 0 0 0 0 0 0 0

e Bit 0 — TOVO: Timer/Counter0 Overflow Flag

The bit TOVO is set (one) when an overflow occurs in Timer/Counter0. TOVO is cleared by hard-
ware when executing the corresponding interrupt Handling Vector. Alternatively, TOVO is
cleared by writing a logic one to the flag. When the SREG I-bit, TOIEO (Timer/Counter0 Overflow
Interrupt Enable), and TOVO are set (one), the Timer/Counter0 Overflow interrupt is executed.

| AtmeL 72

2486AA-AVR-02/2013

| ATmega8(L)

Timer/CounterQ Timer/Counter1 and Timer/Counter0 share the same prescaler module, but the Timer/Counters
and can have different prescaler settings. The description below applies to both Timer/Counter1 and

. Timer/CounterO.
Timer/Counter1

Prescalers

Internal Clock Source The Timer/Counter can be clocked directly by the system clock (by setting the CSn2:0 = 1). This
provides the fastest operation, with a maximum Timer/Counter clock frequency equal to system
clock frequency (fc « 10)- Alternatively, one of four taps from the prescaler can be used as a
clock source. The prescaled clock has a frequency of either fg « ,0/8, foik 110/64 foLk 110/256, or
foLk 110/1024.

Prescaler Reset The prescaler is free running (that is, operates independently of the clock select logic of the
Timer/Counter) and it is shared by Timer/Counter1 and Timer/CounterQ. Since the prescaler is
not affected by the Timer/Counter’s clock select, the state of the prescaler will have implications
for situations where a prescaled clock is used. One example of prescaling artifacts occurs when
the timer is enabled and clocked by the prescaler (6 > CSn2:0 > 1). The number of system clock
cycles from when the timer is enabled to the first count occurs can be from 1 to N+1 system
clock cycles, where N equals the prescaler divisor (8, 64, 256, or 1024).

It is possible to use the prescaler reset for synchronizing the Timer/Counter to program execu-
tion. However, care must be taken if the other Timer/Counter that shares the same prescaler
also uses prescaling. A prescaler reset will affect the prescaler period for all Timer/Counters it is
connected to.

External Clock Source An external clock source applied to the T1/TO pin can be used as Timer/Counter clock
(clkr4/clkry). The T1/TO pin is sampled once every system clock cycle by the pin synchronization
logic. The synchronized (sampled) signal is then passed through the edge detector. Figure 30
shows a functional equivalent block diagram of the T1/T0 synchronization and edge detector
logic. The registers are clocked at the positive edge of the internal system clock (clk,). The latch
is transparent in the high period of the internal system clock.

The edge detector generates one clk,/clkyo pulse for each positive (CSn2:0 = 7) or negative
(CSn2:0 = 6) edge it detects.

Figure 30. T1/TO Pin Sampling

I 1 — Tn_
Tn D Q D Q D Q > L (T'(‘) g}g‘ci
Select Logic)
=l |
clk

/0

Synchronization Edge Detector

The synchronization and edge detector logic introduces a delay of 2.5 to 3.5 system clock cycles
from an edge has been applied to the T1/TO0 pin to the counter is updated.

Enabling and disabling of the clock input must be done when T1/T0 has been stable for at least
one system clock cycle, otherwise it is a risk that a false Timer/Counter clock pulse is generated.

Each half period of the external clock applied must be longer than one system clock cycle to
ensure correct sampling. The external clock must be guaranteed to have less than half the sys-
tem clock frequency (feicik < foik 10/2) given a 50/50% duty cycle. Since the edge detector uses

| /| t m eL 73
2486AA-AVR-02/2013

| ATmega8(L)

sampling, the maximum frequency of an external clock it can detect is half the sampling fre-
quency (Nyquist sampling theorem). However, due to variation of the system clock frequency
and duty cycle caused by Oscillator source (crystal, resonator, and capacitors) tolerances, it is
recommended that maximum frequency of an external clock source is less than f, |,0/2.5.

An external clock source can not be prescaled.

Figure 31. Prescaler for Timer/Counter0 and Timer/Counter1")

clkyq ® > 10-BIT T/C PRESCALER
Clear
g g 8 8
o X > -
o 3] >
PSR10 5
°
@
To fTTTTTTTTTTTTTTTA

Cs10 é CS00
Cs11 r\ CSo01
Cs12 P\ CSs02

TIMER/COUNTER1 CLOCK SOURCE TIMER/COUNTERO CLOCK SOURCE
clky, clkyy

Note: 1. The synchronization logic on the input pins (T1/TQ) is shown in Figure 30 on page 73

Special Function 10

Register — SFIOR L 7 6 5 4 3 2 ! 0
| = = = = ACME PUD PSR2 | PSR10 | SFIOR
Read/Write R R R R R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

¢ Bit 0 — PSR10: Prescaler Reset Timer/Counter1 and Timer/Counter0

When this bit is written to one, the Timer/Counter1 and Timer/Counter0 prescaler will be reset.
The bit will be cleared by hardware after the operation is performed. Writing a zero to this bit will
have no effect. Note that Timer/Counter1 and Timer/CounterQO share the same prescaler and a
reset of this prescaler will affect both timers. This bit will always be read as zero.

| /| t m eL 74
2486AA-AVR-02/2013

| ATmega8(L)

16-bit The 16-bit Timer/Counter unit allows accurate program execution timing (event management),
P wave generation, and signal timing measurement. The main features are:

Timer/Counter1 ¢ True 16-bit Design (that is, allows 16-bit PWM)

¢ Two Independent Output Compare Units

* Double Buffered Output Compare Registers

¢ One Input Capture Unit

¢ Input Capture Noise Canceler

* Clear Timer on Compare Match (Auto Reload)

¢ Glitch-free, Phase Correct Pulse Width Modulator (PWM)

¢ Variable PWM Period

* Frequency Generator

¢ External Event Counter
* Four Independent Interrupt Sources (TOV1, OCF1A, OCF1B, and ICF1)

Overview Most register and bit references in this section are written in general form. A lower case “n”
replaces the Timer/Counter number, and a lower case “X” replaces the Output Compare unit
channel. However, when using the register or bit defines in a program, the precise form must be
used, that is, TCNT1 for accessing Timer/Counter1 counter value and so on.

A simplified block diagram of the 16-bit Timer/Counter is shown in Figure 32 on page 76. For the
actual placement of I/0 pins, refer to “Pin Configurations” on page 2. CPU accessible 1/0 Regis-
ters, including 1/0O bits and 1/O pins, are shown in bold. The device-specific /O Register and bit
locations are listed in the “16-bit Timer/Counter Register Description” on page 96.

| AtmeL 75
2486AA-AVR-02/2013

ATmega8(L)

Figure 32. 16-bit Timer/Counter Block Diagram("

Count TOVn
F—»
Clear (Int. Req.)
Control Logic
Direction 9 clk Clock Select

(From Prescaler)

Edge
Y Y Detector [n
TOP | BOTTOM
' vy / T\

A Timer/Counter A
TCNTn | | | (=0]
% A f OCFnA
I (Int. Req.)
\ [
—] | o | Waveform -
%‘ [Generation OCnA
OCRnA 2 ;
> 1
| [Fixed OCFnB
0 | TOP (Int.Req.)
D | Values
o —) Waveform oCnB
— | Generation o
< |
<D([
« OCRnB ! (From Analog
: Comparator Quput)
| ICFn (Int.Req.)
i I
I)
Edge Noise
- ICFRn | Detector [Canceler
| | ICPn
| TCCRnA | | TCCRnB |

Note: 1. Refer to “Pin Configurations” on page 2, Table 22 on page 58, and Table 28 on page 63 for
Timer/Counter1 pin placement and description

Registers The Timer/Counter (TCNT1), Output Compare Registers (OCR1A/B), and Input Capture Regis-
ter (ICR1) are all 16-bit registers. Special procedures must be followed when accessing the 16-
bit registers. These procedures are described in the section “Accessing 16-bit Registers” on
page 77. The Timer/Counter Control Registers (TCCR1A/B) are 8-bit registers and have no CPU
access restrictions. Interrupt requests (abbreviated to Int.Req. in the figure) signals are all visible
in the Timer Interrupt Flag Register (TIFR). All interrupts are individually masked with the Timer
Interrupt Mask Register (TIMSK). TIFR and TIMSK are not shown in the figure since these regis-
ters are shared by other timer units.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on
the T1 pin. The Clock Select logic block controls which clock source and edge the Timer/Counter
uses to increment (or decrement) its value. The Timer/Counter is inactive when no clock source
is selected. The output from the clock select logic is referred to as the timer clock (clky,).

The double buffered Output Compare Registers (OCR1A/B) are compared with the Timer/Coun-
ter value at all time. The result of the compare can be used by the waveform generator to
generate a PWM or variable frequency output on the Output Compare Pin (OC1A/B). See “Out-
put Compare Units” on page 83. The Compare Match event will also set the Compare Match
Flag (OCF1A/B) which can be used to generate an Output Compare interrupt request.

| /| t m eL 76
2486AA-AVR-02/2013

| ATmega8(L)

The Input Capture Register can capture the Timer/Counter value at a given external (edge trig-
gered) event on either the Input Capture Pin (ICP1) or on the Analog Comparator pins (see
“Analog Comparator” on page 186). The Input Capture unit includes a digital filtering unit (Noise
Canceler) for reducing the chance of capturing noise spikes.

The TOP value, or maximum Timer/Counter value, can in some modes of operation be defined
by either the OCR1A Register, the ICR1 Register, or by a set of fixed values. When using
OCR1A as TOP value in a PWM mode, the OCR1A Register can not be used for generating a
PWM output. However, the TOP value will in this case be double buffered allowing the TOP
value to be changed in run time. If a fixed TOP value is required, the ICR1 Register can be used
as an alternative, freeing the OCR1A to be used as PWM output.

Definitions The following definitions are used extensively throughout the document:

Table 35. Definitions
BOTTOM | The counter reaches the BOTTOM when it becomes 0x0000.

MAX The counter reaches its MAXimum when it becomes OxFFFF (decimal
65535).
TOP The counter reaches the TOP when it becomes equal to the highest

value in the count sequence. The TOP value can be assigned to be one
of the fixed values: Ox0O0FF, O0x01FF, or 0xO3FF, or to the value stored in
the OCR1A or ICR1 Register. The assignment is dependent of the mode
of operation.

Compatibility The 16-bit Timer/Counter has been updated and improved from previous versions of the 16-bit
AVR Timer/Counter. This 16-bit Timer/Counter is fully compatible with the earlier version
regarding:

e All 16-bit Timer/Counter related I/O Register address locations, including Timer Interrupt
Registers
* Bitlocations inside all 16-bit Timer/Counter Registers, including Timer Interrupt Registers

e Interrupt Vectors

The following control bits have changed name, but have same functionality and register location:
e PWM10 is changed to WGM10

e PWM11 is changed to WGM11

e CTC1 is changed to WGM12

The following bits are added to the 16-bit Timer/Counter Control Registers:
* FOC1A and FOC1B are added to TCCR1A
e WGM13 is added to TCCR1B

The 16-bit Timer/Counter has improvements that will affect the compatibility in some special
cases.

Accessing 16-bit The TCNT1, OCR1A/B, and ICR1 are 16-bit registers that can be accessed by the AVR CPU via
Registers the 8-bit data bus. The 16-bit register must be byte accessed using two read or write operations.
The 16-bit timer has a single 8-bit register for temporary storing of the High byte of the 16-bit
access. The same temporary register is shared between all 16-bit registers within the 16-bit
timer. Accessing the Low byte triggers the 16-bit read or write operation. When the Low byte of a
16-bit register is written by the CPU, the High byte stored in the temporary register, and the Low
byte written are both copied into the 16-bit register in the same clock cycle. When the Low byte

| /| t m eL 77
2486AA-AVR-02/2013

| ATmega8(L)

of a 16-bit register is read by the CPU, the High byte of the 16-bit register is copied into the tem-
porary register in the same clock cycle as the Low byte is read.

Not all 16-bit accesses uses the temporary register for the High byte. Reading the OCR1A/B 16-
bit registers does not involve using the temporary register.

To do a 16-bit write, the High byte must be written before the Low byte. For a 16-bit read, the
Low byte must be read before the High byte.

The following code examples show how to access the 16-bit Timer Registers assuming that no
interrupts updates the temporary register. The same principle can be used directly for accessing
the OCR1A/B and ICR1 Registers. Note that when using “C”, the compiler handles the 16-bit
access.

Assembly Code Example!"

; Set TCNT1 to 0xO01FF
1dirl7,0x01

1di rl6, OxXFF

out TCNT1H,r17

out TCNT1L,rl6

; Read TCNT1 into rl7:rlé6
in rl6,TCNT1L

in rl7,TCNT1H

C Code Example!")

unsigned int i;

/* Set TCNT1 to O0x01FF */
TCNT1 = Ox1FF;

/* Read TCNT1 into 1 */
i = TCNT1;

Note: 1. See “About Code Examples” on page 8
The assembly code example returns the TCNT1 value in the r17:r16 Register pair.

It is important to notice that accessing 16-bit registers are atomic operations. If an interrupt
occurs between the two instructions accessing the 16-bit register, and the interrupt code
updates the temporary register by accessing the same or any other of the 16-bit Timer Regis-
ters, then the result of the access outside the interrupt will be corrupted. Therefore, when both
the main code and the interrupt code update the temporary register, the main code must disable
the interrupts during the 16-bit access.

The following code examples show how to do an atomic read of the TCNT1 Register contents.
Reading any of the OCR1A/B or ICR1 Registers can be done by using the same principle.

| AtmeL 78

2486AA-AVR-02/2013

| ATmega8(L)

Assembly Code Example("

TIM16_ReadTCNT1:

; Save Global Interrupt Flag

in r18, SREG

; Disable interrupts

cli

; Read TCNT1l into rl7:rlé6

in rlé6,TCNT1L

in rl17,TCNT1H

; Restore Global Interrupt Flag
out SREG, rl8

ret

C Code Example"

unsigned int TIM16_ReadTCNT1(void)

{
unsigned char sreg;
unsigned int i;
/* Save Global Interrupt Flag */
sreg = SREG;
/* Disable interrupts */
_CLI();
/* Read TCNT1 into i */
i = TCNT1;
/* Restore Global Interrupt Flag */
SREG = sreg;

return i;

Note:

The assembly code example returns the TCNT1 value in the r17:r16 Register pair.

1. See “About Code Examples” on page 8

| /ltmeL

2486AA-AVR-02/2013

79

| ATmega8(L)

Reusing the
Temporary High Byte
Register

Timer/Counter
Clock Sources

Counter Unit

The following code examples show how to do an atomic write of the TCNT1 Register contents.
Writing any of the OCR1A/B or ICR1 Registers can be done by using the same principle.

Assembly Code Example("

TIM16_WriteTCNT1:
; Save Global Interrupt Flag
in r18, SREG
; Disable interrupts
cli
; Set TCNT1 to rl7:rlé6
out TCNT1H, r17
out TCNT1L,rl6
; Restore Global Interrupt Flag
out SREG, rl8

ret
C Code Example"

void TIM16_WriteTCNT1(unsigned int i)
{

unsigned char sreg;

unsigned int i;
/* Save Global Interrupt Flag */
sreg = SREG;

/* Disable interrupts */

_CLI();
/* Set TCNT1 to 1 */
TCNT1 = i;

/* Restore Global Interrupt Flag */
SREG = sreg;

Note: 1.

The assembly code example requires that the r17:r16 Register pair contains the value to be writ-
ten to TCNT1.

See “About Code Examples” on page 8

If writing to more than one 16-bit register where the High byte is the same for all registers writ-
ten, then the High byte only needs to be written once. However, note that the same rule of
atomic operation described previously also applies in this case.

The Timer/Counter can be clocked by an internal or an external clock source. The clock source
is selected by the clock select logic which is controlled by the clock select (CS12:0) bits located
in the Timer/Counter Control Register B (TCCR1B). For details on clock sources and prescaler,
see “Timer/Counter0 and Timer/Counter1 Prescalers” on page 73.

The main part of the 16-bit Timer/Counter is the programmable 16-bit bi-directional counter unit.
Figure 33 on page 81 shows a block diagram of the counter and its surroundings.

| AtmeL 80

2486AA-AVR-02/2013

Input Capture Unit

ATmega8(L)

Figure 33. Counter Unit Block Diagram

DATA BUS (s-bit)
<7 o
TOVn
(Int. Req.)
TEMP (8-bit)
Clock Select
count
< Edge o T
[TCNTnH (8-bit) [TCNTNL (8-bit clear | ey, Detector
oot Control Logic [
TCNTn (16-bit Counter) |oreono"
(From Prescaler)
TTOP TBOTTOM

Signal description (internal signals):
count Increment or decrement TCNT1 by 1

direction Select between increment and decrement

clear Clear TCNT1 (set all bits to zero)
clky, Timer/Counter clock
TOP Signalize that TCNT1 has reached maximum value

BOTTOM Signalize that TCNT1 has reached minimum value (zero)

The 16-bit counter is mapped into two 8-bit I/O memory locations: counter high (TCNT1H) con-
taining the upper eight bits of the counter, and Counter Low (TCNT1L) containing the lower eight
bits. The TCNT1H Register can only be indirectly accessed by the CPU. When the CPU does an
access to the TCNT1H 1I/O location, the CPU accesses the High byte temporary register
(TEMP). The temporary register is updated with the TCNT1H value when the TCNT1L is read,
and TCNT1H is updated with the temporary register value when TCNT1L is written. This allows
the CPU to read or write the entire 16-bit counter value within one clock cycle via the 8-bit data
bus. It is important to notice that there are special cases of writing to the TCNT1 Register when
the counter is counting that will give unpredictable results. The special cases are described in
the sections where they are of importance.

Depending on the mode of operation used, the counter is cleared, incremented, or decremented
at each timer clock (clkt;). The clky; can be generated from an external or internal clock source,
selected by the clock select bits (CS12:0). When no clock source is selected (CS12:0 = 0) the
timer is stopped. However, the TCNT1 value can be accessed by the CPU, independent of
whether clky, is present or not. A CPU write overrides (has priority over) all counter clear or
count operations.

The counting sequence is determined by the setting of the Waveform Generation mode bits
(WGM13:0) located in the Timer/Counter Control Registers A and B (TCCR1A and TCCR1B).
There are close connections between how the counter behaves (counts) and how waveforms
are generated on the Output Compare Outputs OC1x. For more details about advanced count-
ing sequences and waveform generation, see “Modes of Operation” on page 87.

The Timer/Counter Overflow (TOV1) fLag is set according to the mode of operation selected by
the WGM13:0 bits. TOV1 can be used for generating a CPU interrupt.

The Timer/Counter incorporates an Input Capture unit that can capture external events and give
them a time-stamp indicating time of occurrence. The external signal indicating an event, or mul-
tiple events, can be applied via the ICP1 pin or alternatively, via the Analog Comparator unit.

| AtmeL 81

2486AA-AVR-02/2013

| ATmega8(L)

The time-stamps can then be used to calculate frequency, duty-cycle, and other features of the
signal applied. Alternatively the time-stamps can be used for creating a log of the events.

The Input Capture unit is illustrated by the block diagram shown in Figure 34. The elements of
the block diagram that are not directly a part of the Input Capture unit are gray shaded. The
small “n” in register and bit names indicates the Timer/Counter number.

Figure 34. Input Capture Unit Block Diagram

DATA BUS (s-bit)

[TEMP@Bb) |
| 1cRaH(8-bit) | ICRnL 8-bit) | | TONTaH @bty | TONTAL (8-bity |
»| WRITE ICRn (16-bit Register) TCNTn (16-bit Counter)

| = |

* ACO* Acic* ICNC ICES
_ Analog ¢ ¢
Comparator o -
Noise o Edge _
Canceler Detector - ICFn (Int. Req.)
ICPn >

When a change of the logic level (an event) occurs on the Input Capture Pin (ICP1), alternatively
on the Analog Comparator Output (ACO), and this change confirms to the setting of the edge
detector, a capture will be triggered. When a capture is triggered, the 16-bit value of the counter
(TCNT1) is written to the Input Capture Register (ICR1). The Input Capture Flag (ICF1) is set at
the same system clock as the TCNT1 value is copied into ICR1 Register. If enabled (TICIE1 =
1), the Input Capture Flag generates an Input Capture interrupt. The ICF1 Flag is automatically
cleared when the interrupt is executed. Alternatively the ICF1 Flag can be cleared by software
by writing a logical one to its I/O bit location.

Reading the 16-bit value in the Input Capture Register (ICR1) is done by first reading the Low
byte (ICR1L) and then the High byte (ICR1H). When the Low byte is read the High byte is copied
into the High byte temporary register (TEMP). When the CPU reads the ICR1H 1/O location it will
access the TEMP Register.

The ICR1 Register can only be written when using a Waveform Generation mode that utilizes
the ICR1 Register for defining the counter's TOP value. In these cases the Waveform Genera-
tion mode (WGM13:0) bits must be set before the TOP value can be written to the ICR1
Register. When writing the ICR1 Register the High byte must be written to the ICR1H 1/O loca-
tion before the Low byte is written to ICR1L.

For more information on how to access the 16-bit registers refer to “Accessing 16-bit Registers”

on page 77.
Input Capture Pin The main trigger source for the Input Capture unit is the Input Capture Pin (ICP1). Timer/Counter
Source 1 can alternatively use the Analog Comparator Output as trigger source for the Input Capture
| AtmeL 82

2486AA-AVR-02/2013

| ATmega8(L)

unit. The Analog Comparator is selected as trigger source by setting the Analog Comparator
Input Capture (ACIC) bit in the Analog Comparator Control and Status Register (ACSR). Be
aware that changing trigger source can trigger a capture. The Input Capture Flag must therefore
be cleared after the change.

Both the Input Capture Pin (ICP1) and the Analog Comparator Output (ACO) inputs are sampled
using the same technique as for the T1 pin (Figure 30 on page 73). The edge detector is also
identical. However, when the noise canceler is enabled, additional logic is inserted before the
edge detector, which increases the delay by four system clock cycles. Note that the input of the
noise canceler and edge detector is always enabled unless the Timer/Counter is set in a Wave-
form Generation mode that uses ICR1 to define TOP.

An Input Capture can be triggered by software by controlling the port of the ICP1 pin.

Noise Canceler The noise canceler improves noise immunity by using a simple digital filtering scheme. The
noise canceler input is monitored over four samples, and all four must be equal for changing the
output that in turn is used by the edge detector.

The noise canceler is enabled by setting the Input Capture Noise Canceler (ICNC1) bit in
Timer/Counter Control Register B(TCCR1B). When enabled the noise canceler introduces addi-
tional four system clock cycles of delay from a change applied to the input, to the update of the
ICR1 Register. The noise canceler uses the system clock and is therefore not affected by the

prescaler.
Using the Input The main challenge when using the Input Capture unit is to assign enough processor capacity
Capture Unit for handling the incoming events. The time between two events is critical. If the processor has

not read the captured value in the ICR1 Register before the next event occurs, the ICR1 will be
overwritten with a new value. In this case the result of the capture will be incorrect.

When using the Input Capture interrupt, the ICR1 Register should be read as early in the inter-
rupt handler routine as possible. Even though the Input Capture interrupt has relatively high
priority, the maximum interrupt response time is dependent on the maximum number of clock
cycles it takes to handle any of the other interrupt requests.

Using the Input Capture unit in any mode of operation when the TOP value (resolution) is
actively changed during operation, is not recommended.

Measurement of an external signal’s duty cycle requires that the trigger edge is changed after
each capture. Changing the edge sensing must be done as early as possible after the ICR1
Register has been read. After a change of the edge, the Input Capture Flag (ICF1) must be
cleared by software (writing a logical one to the 1/O bit location). For measuring frequency only,
the clearing of the ICF1 Flag is not required (if an interrupt handler is used).

Output Compare The 16-bit comparator continuously compares TCNT1 with the Output Compare Register

Units (OCR1Xx). If TCNT equals OCR1x the comparator signals a match. A match will set the Output
Compare Flag (OCF1x) at the next timer clock cycle. If enabled (OCIE1x = 1), the Output Com-
pare Flag generates an Output Compare interrupt. The OCF1x Flag is automatically cleared
when the interrupt is executed. Alternatively the OCF1x Flag can be cleared by software by writ-
ing a logical one to its I/O bit location. The waveform generator uses the match signal to
generate an output according to operating mode set by the Waveform Generation mode
(WGM13:0) bits and Compare Output mode (COM1x1:0) bits. The TOP and BOTTOM signals
are used by the waveform generator for handling the special cases of the extreme values in
some modes of operation (see “Modes of Operation” on page 87).

A special feature of Output Compare unit A allows it to define the Timer/Counter TOP value (that
is counter resolution). In addition to the counter resolution, the TOP value defines the period
time for waveforms generated by the waveform generator.

| AtmeL 83

2486AA-AVR-02/2013

| ATmega8(L)

Figure 35 shows a block diagram of the Output Compare unit. The small “n” in the register and
bit names indicates the device number (n = 1 for Timer/Counter 1), and the “x” indicates Output
Compare unit (A/B). The elements of the block diagram that are not directly a part of the Output
Compare unit are gray shaded.

Figure 35. Output Compare Unit, Block Diagram

DATA BUS (s-bit)
- -
AA A t
TEMP (8-bit)
Tt
— ¥
| ocRnxH But. (8-bit) | OCRnxL Buf. 8-bit) | [| | TCNTnH 8-bit) | TCNTnL (8-bit) |
OCRnx Buffer (16-bit Register) TCNTn (16-bit Counter)
— !
—Y
| OCRnxH (8-bit) | OCRnxL (8-bit) |
OCRnNXx (16-bit Register)

J L

| = (16-bit Comparator) |

——— OCFnx (Int.Req.)
4

TP ——»
BOTTOM —— |

Waveform Generator p-{ OCnx

7

WGMn3:0 COMnx1:0

The OCR1x Register is double buffered when using any of the twelve Pulse Width Modulation
(PWM) modes. For the normal and Clear Timer on Compare (CTC) modes of operation, the dou-
ble buffering is disabled. The double buffering synchronizes the update of the OCR1x Compare
Register to either TOP or BOTTOM of the counting sequence. The synchronization prevents the
occurrence of odd-length, non-symmetrical PWM pulses, thereby making the output glitch-free.

The OCR1x Register access may seem complex, but this is not case. When the double buffering
is enabled, the CPU has access to the OCR1x Buffer Register, and if double buffering is dis-
abled the CPU will access the OCR1x directly. The content of the OCR1x (Buffer or Compare)
Register is only changed by a write operation (the Timer/Counter does not update this register
automatically as the TCNT1 and ICR1 Register). Therefore OCR1x is not read via the High byte
temporary register (TEMP). However, it is a good practice to read the Low byte first as when
accessing other 16-bit registers. Writing the OCR1x Registers must be done via the TEMP Reg-
ister since the compare of all 16-bit is done continuously. The High byte (OCR1xH) has to be
written first. When the High byte 1/O location is written by the CPU, the TEMP Register will be
updated by the value written. Then when the Low byte (OCR1xL) is written to the lower eight
bits, the High byte will be copied into the upper 8-bits of either the OCR1x buffer or OCR1x Com-
pare Register in the same system clock cycle.

For more information of how to access the 16-bit registers refer to “Accessing 16-bit Registers”
on page 77.

| /ltmeL 84

2486AA-AVR-02/2013

| ATmega8(L)

Force Output
Compare

Compare Match
Blocking by TCNT1
Write

Using the Output
Compare Unit

Compare Match
Output Unit

In non-PWM Waveform Generation modes, the match output of the comparator can be forced by
writing a one to the Force Output Compare (FOC1Xx) bit. Forcing Compare Match will not set the
OCF1x Flag or reload/clear the timer, but the OC1x pin will be updated as if a real Compare
Match had occurred (the COM1x1:0 bits settings define whether the OC1x pin is set, cleared or
toggled).

All CPU writes to the TCNT1 Register will block any Compare Match that occurs in the next timer
clock cycle, even when the timer is stopped. This feature allows OCR1x to be initialized to the
same value as TCNT1 without triggering an interrupt when the Timer/Counter clock is enabled.

Since writing TCNT1 in any mode of operation will block all compare matches for one timer clock
cycle, there are risks involved when changing TCNT1 when using any of the Output Compare
channels, independent of whether the Timer/Counter is running or not. If the value written to
TCNT1 equals the OCR1x value, the Compare Match will be missed, resulting in incorrect wave-
form generation. Do not write the TCNT1 equal to TOP in PWM modes with variable TOP
values. The Compare Match for the TOP will be ignored and the counter will continue to
OxFFFF. Similarly, do not write the TCNT1 value equal to BOTTOM when the counter is
downcounting.

The setup of the OC1x should be performed before setting the Data Direction Register for the
port pin to output. The easiest way of setting the OC1x value is to use the Force Output Com-
pare (FOC1x) strobe bits in Normal mode. The OC1x Register keeps its value even when
changing between Waveform Generation modes.

Be aware that the COM1x1:0 bits are not double buffered together with the compare value.
Changing the COM1x1:0 bits will take effect immediately.

The Compare Output mode (COM1x1:0) bits have two functions. The waveform generator uses
the COM1x1:0 bits for defining the Output Compare (OC1x) state at the next Compare Match.
Secondly the COM1x1:0 bits control the OC1x pin output source. Figure 36 on page 86 shows a
simplified schematic of the logic affected by the COM1x1:0 bit setting. The 1/O Registers, 1/0
bits, and 1/O pins in the figure are shown in bold. Only the parts of the general 1/0O Port Control
Registers (DDR and PORT) that are affected by the COM1x1:0 bits are shown. When referring
to the OC1x state, the reference is for the internal OC1x Register, not the OC1x pin. If a System
Reset occur, the OC1x Register is reset to “0”.

| AtmeL 85

2486AA-AVR-02/2013

ATmega8(L)

Figure 36. Compare Match Output Unit, Schematic

=B

COMnx1
COMnNX0 Waveform L Ip al
FOCnx Generator
] OCnx
OCnx Pin
A
D Q-
% |
2 PORT
<
\ DDR
clk,q

The general 1/O port function is overridden by the Output Compare (OC1x) from the waveform
generator if either of the COM1x1:0 bits are set. However, the OC1x pin direction (input or out-
put) is still controlled by the Data Direction Register (DDR) for the port pin. The Data Direction
Register bit for the OC1x pin (DDR_OC1x) must be set as output before the OC1x value is visi-
ble on the pin. The port override function is generally independent of the Waveform Generation
mode, but there are some exceptions. Refer to Table 36 on page 96, Table 37 on page 96 and
Table 38 on page 97 for details.

The design of the Output Compare Pin logic allows initialization of the OC1x state before the
output is enabled. Note that some COM1x1:0 bit settings are reserved for certain modes of oper-
ation. See “16-bit Timer/Counter Register Description” on page 96.

The COM1x1:0 bits have no effect on the Input Capture unit.

| /| t m eL 86
2486AA-AVR-02/2013

| ATmega8(L)

Compare Output Mode
and Waveform
Generation

Modes of
Operation

Normal Mode

Clear Timer on
Compare Match (CTC)
Mode

The waveform generator uses the COM1x1:0 bits differently in normal, CTC, and PWM modes.
For all modes, setting the COM1x1:0 = 0 tells the waveform generator that no action on the
OC1x Register is to be performed on the next Compare Match. For compare output actions in
the non-PWM modes refer to Table 36 on page 96. For fast PWM mode refer to Table 37 on
page 96, and for phase correct and phase and frequency correct PWM refer to Table 38 on page
97.

A change of the COM1x1:0 bits state will have effect at the first Compare Match after the bits are
written. For non-PWM modes, the action can be forced to have immediate effect by using the
FOC1x strobe bits.

The mode of operation (that is, the behavior of the Timer/Counter and the Output Compare pins)
is defined by the combination of the Waveform Generation mode (WGM13:0) and Compare Out-
put mode (COM1x1:0) bits. The Compare Output mode bits do not affect the counting sequence,
while the Waveform Generation mode bits do. The COM1x1:0 bits control whether the PWM out-
put generated should be inverted or not (inverted or non-inverted PWM). For non-PWM modes
the COM1x1:0 bits control whether the output should be set, cleared or toggle at a Compare
Match. See “Compare Match Output Unit” on page 85.

For detailed timing information refer to “Timer/Counter Timing Diagrams” on page 94.

The simplest mode of operation is the Normal mode (WGM13:0 = 0). In this mode the counting
direction is always up (incrementing), and no counter clear is performed. The counter simply
overruns when it passes its maximum 16-bit value (MAX = OxFFFF) and then restarts from the
BOTTOM (0x0000). In normal operation the Timer/Counter Overflow Flag (TOV1) will be set in
the same timer clock cycle as the TCNT1 becomes zero. The TOV1 Flag in this case behaves
like a 17th bit, except that it is only set, not cleared. However, combined with the timer overflow
interrupt that automatically clears the TOV1 Flag, the timer resolution can be increased by soft-
ware. There are no special cases to consider in the Normal mode, a new counter value can be
written anytime.

The Input Capture unit is easy to use in Normal mode. However, observe that the maximum
interval between the external events must not exceed the resolution of the counter. If the interval
between events are too long, the timer overflow interrupt or the prescaler must be used to
extend the resolution for the capture unit.

The Output Compare units can be used to generate interrupts at some given time. Using the
Output Compare to generate waveforms in Normal mode is not recommended, since this will
occupy too much of the CPU time.

In Clear Timer on Compare or CTC mode (WGM13:0 = 4 or 12), the OCR1A or ICR1 Register
are used to manipulate the counter resolution. In CTC mode the counter is cleared to zero when
the counter value (TCNT1) matches either the OCR1A (WGM13:0 = 4) or the ICR1 (WGM13:0 =
12). The OCR1A or ICR1 define the top value for the counter, hence also its resolution. This
mode allows greater control of the Compare Match output frequency. It also simplifies the oper-
ation of counting external events.

The timing diagram for the CTC mode is shown in Figure 37 on page 88. The counter value
(TCNT1) increases until a Compare Match occurs with either OCR1A or ICR1, and then counter
(TCNT1) is cleared.

| AtmeL 87

2486AA-AVR-02/2013

ATmega8(L)

Figure 37. CTC Mode, Timing Diagram

OCnA Interrupt Flag Set
. 0 sy ' or ICFn Interrupt Flag Set
i ‘ ‘ i \ \ \ v | (Interrupt on TOP)

TCNTn

4

OCnA ! Y
(Toggle)

e bt a1

An interrupt can be generated at each time the counter value reaches the TOP value by either
using the OCF1A or ICF1 Flag according to the register used to define the TOP value. If the
interrupt is enabled, the interrupt handler routine can be used for updating the TOP value. How-
ever, changing the TOP to a value close to BOTTOM when the counter is running with none or a
low prescaler value must be done with care since the CTC mode does not have the double buff-
ering feature. If the new value written to OCR1A or ICR1 is lower than the current value of
TCNT1, the counter will miss the Compare Match. The counter will then have to count to its max-
imum value (OxFFFF) and wrap around starting at 0x0000 before the Compare Match can occur.
In many cases this feature is not desirable. An alternative will then be to use the fast PWM mode
using OCR1A for defining TOP (WGM13:0 = 15) since the OCR1A then will be double buffered.

For generating a waveform output in CTC mode, the OC1A output can be set to toggle its logical
level on each Compare Match by setting the Compare Output mode bits to toggle mode
(COM1A1:0 = 1). The OC1A value will not be visible on the port pin unless the data direction for
the pin is set to output (DDR_OC1A = 1). The waveform generated will have a maximum fre-
quency of focia = fo 110/2 when OCR1A is set to zero (0x0000). The waveform frequency is
defined by the following equation:

(COMnA1:0 = 1)

P o vo
O0Cnd ™ 2. N.(1+OCRnA)

The N variable represents the prescaler factor (1, 8, 64, 256, or 1024).

As for the Normal mode of operation, the TOV1 Flag is set in the same timer clock cycle that the
counter counts from MAX to 0x0000.

Fast PWM Mode The fast Pulse Width Modulation or fast PWM mode (WGM13:0 = 5, 6, 7, 14, or 15) provides a
high frequency PWM waveform generation option. The fast PWM differs from the other PWM
options by its single-slope operation. The counter counts from BOTTOM to TOP then restarts
from BOTTOM. In non-inverting Compare Output mode, the Output Compare (OC1x) is cleared
on the Compare Match between TCNT1 and OCR1x, and set at BOTTOM. In inverting Compare
Output mode output is set on Compare Match and cleared at BOTTOM. Due to the single-slope
operation, the operating frequency of the fast PWM mode can be twice as high as the phase cor-
rect and phase and frequency correct PWM modes that use dual-slope operation. This high
frequency makes the fast PWM mode well suited for power regulation, rectification, and DAC
applications. High frequency allows physically small sized external components (coils, capaci-
tors), hence reduces total system cost.

The PWM resolution for fast PWM can be fixed to 8-bit, 9-bit, or 10-bit, or defined by either ICR1
or OCR1A. The minimum resolution allowed is 2-bit (ICR1 or OCR1A set to 0x0003), and the

| /| t m eL 88
2486AA-AVR-02/2013

| ATmega8(L)

maximum resolution is 16-bit (ICR1 or OCR1A set to MAX). The PWM resolution in bits can be
calculated by using the following equation:

R _ log(ToOP +1)
FPWM |Og(2)

In fast PWM mode the counter is incremented until the counter value matches either one of the
fixed values OxO0FF, Ox01FF, or 0x03FF (WGM13:0 =5, 6, or 7), the value in ICR1 (WGM13:0 =
14), or the value in OCR1A (WGM13:0 = 15). The counter is then cleared at the following timer
clock cycle. The timing diagram for the fast PWM mode is shown in Figure 38. The figure shows
fast PWM mode when OCR1A or ICR1 is used to define TOP. The TCNT1 value is in the timing
diagram shown as a histogram for illustrating the single-slope operation. The diagram includes
non-inverted and inverted PWM outputs. The small horizontal line marks on the TCNT1 slopes
represent compare matches between OCR1x and TCNT1. The OC1x Interrupt Flag will be set
when a Compare Match occurs.

Figure 38. Fast PWM Mode, Timing Diagram

OCRnx / TOP Update
and TOVn Interrupt Flag
) Set and OCnA Interrupt
v Flag Set or ICFn
Interrupt Flag Set
(Interrupt on TOP)

TCNTn

OCnx

\

|
LT (COMNnx1:0 =2)
OCnx | (COMnx1:0 = 3)

pos 1~z s s o7 —p—o

The Timer/Counter Overflow Flag (TOV1) is set each time the counter reaches TOP. In addition
the OCF1A or ICF1 Flag is set at the same timer clock cycle as TOV1 is set when either OCR1A
or ICR1 is used for defining the TOP value. If one of the interrupts are enabled, the interrupt han-
dler routine can be used for updating the TOP and compare values.

When changing the TOP value the program must ensure that the new TOP value is higher or
equal to the value of all of the Compare Registers. If the TOP value is lower than any of the
Compare Registers, a Compare Match will never occur between the TCNT1 and the OCR1x.
Note that when using fixed TOP values the unused bits are masked to zero when any of the
OCR1x Registers are written.

The procedure for updating ICR1 differs from updating OCR1A when used for defining the TOP
value. The ICR1 Register is not double buffered. This means that if ICR1 is changed to a low
value when the counter is running with none or a low prescaler value, there is a risk that the new
ICR1 value written is lower than the current value of TCNT1. The result will then be that the
counter will miss the Compare Match at the TOP value. The counter will then have to count to
the MAX value (OxFFFF) and wrap around starting at 0x0000 before the Compare Match can
occur. The OCR1A Register, however, is double buffered. This feature allows the OCR1A I/O
location to be written anytime. When the OCR1A 1/O location is written the value written will be
put into the OCR1A Buffer Register. The OCR1A Compare Register will then be updated with
the value in the Buffer Register at the next timer clock cycle the TCNT1 matches TOP. The
update is done at the same timer clock cycle as the TCNT1 is cleared and the TOV1 Flag is set.

| /| t m eL 89
2486AA-AVR-02/2013

| ATmega8(L)

Using the ICR1 Register for defining TOP works well when using fixed TOP values. By using
ICR1, the OCR1A Register is free to be used for generating a PWM output on OC1A. However,
if the base PWM frequency is actively changed (by changing the TOP value), using the OCR1A
as TOP is clearly a better choice due to its double buffer feature.

In fast PWM mode, the compare units allow generation of PWM waveforms on the OC1x pins.
Setting the COM1x1:0 bits to 2 will produce a non-inverted PWM and an inverted PWM output
can be generated by setting the COM1x1:0 to 3. See Table 37 on page 96. The actual OC1x
value will only be visible on the port pin if the data direction for the port pin is set as output
(DDR_OC1x). The PWM waveform is generated by setting (or clearing) the OC1x Register at
the Compare Match between OCR1x and TCNT1, and clearing (or setting) the OC1x Register at
the timer clock cycle the counter is cleared (changes from TOP to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

_ Jakuo
focnxpwur = N (1+70P)

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCR1x Register represents special cases when generating a PWM
waveform output in the fast PWM mode. If the OCR1x is set equal to BOTTOM (0x0000) the out-
put will be a narrow spike for each TOP+1 timer clock cycle. Setting the OCR1x equal to TOP
will result in a constant high or low output (depending on the polarity of the output set by the
COM1x1:0 bits).

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by set-
ting OC1A to toggle its logical level on each Compare Match (COM1A1:0 = 1). This applies only
if OCR1A is used to define the TOP value (WGM13:0 = 15). The waveform generated will have
a maximum frequency of focya = fo 10/2 when OCR1A is set to zero (0x0000). This feature is
similar to the OC1A toggle in CTC mode, except the double buffer feature of the Output Com-
pare unit is enabled in the fast PWM mode.

Phase Correct PWM The phase correct Pulse Width Modulation or phase correct PWM mode (WGM13:0 = 1, 2, 3,

Mode 10, or 11) provides a high resolution phase correct PWM waveform generation option. The
phase correct PWM mode is, like the phase and frequency correct PWM mode, based on a dual-
slope operation. The counter counts repeatedly from BOTTOM (0x0000) to TOP and then from
TOP to BOTTOM. In non-inverting Compare Output mode, the Output Compare (OC1x) is
cleared on the Compare Match between TCNT1 and OCR1x while upcounting, and set on the
Compare Match while downcounting. In inverting Output Compare mode, the operation is
inverted. The dual-slope operation has lower maximum operation frequency than single slope
operation. However, due to the symmetric feature of the dual-slope PWM modes, these modes
are preferred for motor control applications.

The PWM resolution for the phase correct PWM mode can be fixed to 8-bit, 9-bit, or 10-bit, or
defined by either ICR1 or OCR1A. The minimum resolution allowed is 2-bit (ICR1 or OCR1A set
to 0x0003), and the maximum resolution is 16-bit ICR1 or OCR1A set to MAX). The PWM reso-
lution in bits can be calculated by using the following equation:

R _ log(TOP+1)
PCPWM = " og(2)

In phase correct PWM mode the counter is incremented until the counter value matches either
one of the fixed values 0x00FF, Ox01FF, or 0x03FF (WGM13:0 = 1, 2, or 3), the value in ICR1
(WGM13:0 = 10), or the value in OCR1A (WGM13:0 = 11). The counter has then reached the
TOP and changes the count direction. The TCNT1 value will be equal to TOP for one timer clock
cycle. The timing diagram for the phase correct PWM mode is shown on Figure 39 on page 91.
The figure shows phase correct PWM mode when OCR1A or ICR1 is used to define TOP. The
TCNT1 value is in the timing diagram shown as a histogram for illustrating the dual-slope opera-

| /| t m eL 90
2486AA-AVR-02/2013

| ATmega8(L)

tion. The diagram includes non-inverted and inverted PWM outputs. The small horizontal line
marks on the TCNT1 slopes represent compare matches between OCR1x and TCNT1. The
OC1x Interrupt Flag will be set when a Compare Match occurs.

Figure 39. Phase Correct PWM Mode, Timing Diagram

OCRnx / TOP Update and
OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

TOVn Interrupt Flag Set
|| (Interrupt on Bottom)

v
TCNTn/

(COMNnx1:0=2)
oo [1 1 1 [counmo=9

The Timer/Counter Overflow Flag (TOV1) is set each time the counter reaches BOTTOM. When
either OCR1A or ICR1 is used for defining the TOP value, the OC1A or ICF1 Flag is set accord-
ingly at the same timer clock cycle as the OCR1x Registers are updated with the double buffer
value (at TOP). The Interrupt Flags can be used to generate an interrupt each time the counter
reaches the TOP or BOTTOM value.

OCnx

When changing the TOP value the program must ensure that the new TOP value is higher or
equal to the value of all of the Compare Registers. If the TOP value is lower than any of the
Compare Registers, a Compare Match will never occur between the TCNT1 and the OCR1x.
Note that when using fixed TOP values, the unused bits are masked to zero when any of the
OCR1x Registers are written. As the third period shown in Figure 39 illustrates, changing the
TOP actively while the Timer/Counter is running in the Phase Correct mode can result in an
unsymmetrical output. The reason for this can be found in the time of update of the OCR1x Reg-
ister. Since the OCR1x update occurs at TOP, the PWM period starts and ends at TOP. This
implies that the length of the falling slope is determined by the previous TOP value, while the
length of the rising slope is determined by the new TOP value. When these two values differ the
two slopes of the period will differ in length. The difference in length gives the unsymmetrical
result on the output.

It is recommended to use the Phase and Frequency Correct mode instead of the Phase Correct
mode when changing the TOP value while the Timer/Counter is running. When using a static
TOP value there are practically no differences between the two modes of operation.

In phase correct PWM mode, the compare units allow generation of PWM waveforms on the
OC1x pins. Setting the COM1x1:0 bits to 2 will produce a non-inverted PWM and an inverted
PWM output can be generated by setting the COM1x1:0 to 3. See Table 38 on page 97. The
actual OC1x value will only be visible on the port pin if the data direction for the port pin is set as
output (DDR_OC1x). The PWM waveform is generated by setting (or clearing) the OC1x Regis-
ter at the Compare Match between OCR1x and TCNT1 when the counter increments, and
clearing (or setting) the OC1x Register at Compare Match between OCR1x and TCNT1 when

| /| t m eL 91
2486AA-AVR-02/2013

| ATmega8(L)

Phase and Frequency
Correct PWM Mode

the counter decrements. The PWM frequency for the output when using phase correct PWM can
be calculated by the following equation:

__Jexo
Tocnxpcpivm = 2.N-TOP

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCR1x Register represent special cases when generating a PWM
waveform output in the phase correct PWM mode. If the OCR1x is set equal to BOTTOM the
output will be continuously low and if set equal to TOP the output will be continuously high for
non-inverted PWM mode. For inverted PWM the output will have the opposite logic values.

If OCR1A is used to define the TOP value (WMG13:0 = 11) and COM1A1:0 = 1, the OC1A out-
put will toggle with a 50% duty cycle.

The phase and frequency correct Pulse Width Modulation, or phase and frequency correct PWM
mode (WGM13:0 = 8 or 9) provides a high resolution phase and frequency correct PWM wave-
form generation option. The phase and frequency correct PWM mode is, like the phase correct
PWM mode, based on a dual-slope operation. The counter counts repeatedly from BOTTOM
(0x0000) to TOP and then from TOP to BOTTOM. In non-inverting Compare Output mode, the
Output Compare (OC1x) is cleared on the Compare Match between TCNT1 and OCR1x while
upcounting, and set on the Compare Match while downcounting. In inverting Compare Output
mode, the operation is inverted. The dual-slope operation gives a lower maximum operation fre-
quency compared to the single-slope operation. However, due to the symmetric feature of the
dual-slope PWM modes, these modes are preferred for motor control applications.

The main difference between the phase correct, and the phase and frequency correct PWM
mode is the time the OCR1x Register is updated by the OCR1x Buffer Register, (see Figure 39
on page 91 and Figure 40 on page 93).

The PWM resolution for the phase and frequency correct PWM mode can be defined by either
ICR1 or OCR1A. The minimum resolution allowed is 2-bit (ICR1 or OCR1A set to 0x0003), and
the maximum resolution is 16-bit (ICR1 or OCR1A set to MAX). The PWM resolution in bits can
be calculated using the following equation:

R _ log(TOP+1)

PFCPWM — |Og(2)

In phase and frequency correct PWM mode the counter is incremented until the counter value
matches either the value in ICR1 (WGM13:0 = 8), or the value in OCR1A (WGM13:0 = 9). The
counter has then reached the TOP and changes the count direction. The TCNT1 value will be
equal to TOP for one timer clock cycle. The timing diagram for the phase correct and frequency
correct PWM mode is shown on Figure 40 on page 93. The figure shows phase and frequency
correct PWM mode when OCR1A or ICR1 is used to define TOP. The TCNT1 value is in the
timing diagram shown as a histogram for illustrating the dual-slope operation. The diagram
includes non-inverted and inverted PWM outputs. The small horizontal line marks on the TCNT1
slopes represent compare matches between OCR1x and TCNT1. The OC1x Interrupt Flag will
be set when a Compare Match occurs.

| AtmeL 92

2486AA-AVR-02/2013

ATmega8(L)

Figure 40. Phase and Frequency Correct PWM Mode, Timing Diagram

OCnA Interrupt Flag Set of
ICFn Interrupt Flag Set
(Interrupt on TOP)

OCRnx / TOP Update and
TOVn Interrupt Flag Set
A\ (Interrupt on Bottom)

\

/ Ny
TCNTn

A A Y A

OCnx |] (COMnx1:0 = 2)

‘OCnx [] [[] commnxto=3
Period }471 —>|<72 —»I«s 4474 4#

The Timer/Counter Overflow Flag (TOV1) is set at the same timer clock cycle as the OCR1x
Registers are updated with the double buffer value (at BOTTOM). When either OCR1A or ICR1
is used for defining the TOP value, the OC1A or ICF1 Flag set when TCNT1 has reached TOP.
The Interrupt Flags can then be used to generate an interrupt each time the counter reaches the
TOP or BOTTOM value.

When changing the TOP value the program must ensure that the new TOP value is higher or
equal to the value of all of the Compare Registers. If the TOP value is lower than any of the
Compare Registers, a Compare Match will never occur between the TCNT1 and the OCR1x.

As Figure 40 shows the output generated is, in contrast to the Phase Correct mode, symmetrical
in all periods. Since the OCR1x Registers are updated at BOTTOM, the length of the rising and
the falling slopes will always be equal. This gives symmetrical output pulses and is therefore fre-
quency correct.

Using the ICR1 Register for defining TOP works well when using fixed TOP values. By using
ICR1, the OCR1A Register is free to be used for generating a PWM output on OC1A. However,
if the base PWM frequency is actively changed by changing the TOP value, using the OCR1A as
TOP is clearly a better choice due to its double buffer feature.

In phase and frequency correct PWM mode, the compare units allow generation of PWM wave-
forms on the OC1x pins. Setting the COM1x1:0 bits to 2 will produce a non-inverted PWM and
an inverted PWM output can be generated by setting the COM1x1:0 to 3. See Table 38 on page
97. The actual OC1x value will only be visible on the port pin if the data direction for the port pin
is set as output (DDR_OC1x). The PWM waveform is generated by setting (or clearing) the
OC1x Register at the Compare Match between OCR1x and TCNT1 when the counter incre-
ments, and clearing (or setting) the OC1x Register at Compare Match between OCR1x and
TCNT1 when the counter decrements. The PWM frequency for the output when using phase
and frequency correct PWM can be calculated by the following equation:

_ Jek o
TocnxprcPwm = 5N - 1OP

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCR1x Register represents special cases when generating a PWM
waveform output in the phase correct PWM mode. If the OCR1x is set equal to BOTTOM the

| /| t m eL 93
2486AA-AVR-02/2013

| ATmega8(L)

Timer/Counter

Timing Diagrams

output will be continuously low and if set equal to TOP the output will be set to high for non-
inverted PWM mode. For inverted PWM the output will have the opposite logic values.

If OCR1A is used to define the TOP value (WGM13:0 = 9) and COM1A1:0 = 1, the OC1A output
will toggle with a 50% duty cycle.

The Timer/Counter is a synchronous design and the timer clock (clky¢) is therefore shown as a
clock enable signal in the following figures. The figures include information on when Interrupt
Flags are set, and when the OCR1x Register is updated with the OCR1x buffer value (only for
modes utilizing double buffering). Figure 41 shows a timing diagram for the setting of OCF1x.

Figure 41. Timer/Counter Timing Diagram, Setting of OCF1x, no Prescaling

clk,o

clk;,
(clk,/1)

TCNTn

OCRnNx

OCFnx

OCRnx - 1

OCRnx

OCRnx + 1

OCRnx + 2

OCRnx Value

Figure 42 shows the same timing data, but with the prescaler enabled.

Figure 42. Timer/Counter Timing Diagram, Setting of OCF1x, with Prescaler (f. ,0/8)

clk,o

clk,.
(clk,o/8)

TCNTn

OCRnx

OCFnx

I
i

[T
;

[T
:

[T
:

[

—

OCRnx - 1

OCRnx

OCRnx + 1

OCRnx + 2

OCRnx Value

Figure 43 on page 95 shows the count sequence close to TOP in various modes. When using
phase and frequency correct PWM mode the OCR1x Register is updated at BOTTOM. The tim-

| /ltmeL

2486AA-AVR-02/2013

94

-IIIIllIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII-IIIIIIIIIIIIl\11TNB§ﬁ38(LJ

ing diagrams will be the same, but TOP should be replaced by BOTTOM, TOP-1 by BOTTOM+1
and so on. The same renaming applies for modes that set the TOV1 Flag at BOTTOM.

Figure 43. Timer/Counter Timing Diagram, no Prescaling

cIkVo

clk;,

(clk,o/1)

TCNTn

(CTC and FPWM) TOP -1 TOP BOTTOM BOTTOM + 1

TCNTn

(PG and PEC PWM) TOP - 1 TOP TOP - 1 TOP -2

TOVn (FPWM)

and ICFn (if used
as TOP)

OCRnx
(Update at TOP)

Old OCRnx Value New OCRnx Value

Figure 44 shows the same timing data, but with the prescaler enabled.

Figure 44. Timer/Counter Timing Diagram, with Prescaler (f.y ,,0/8)

e (AU
S | R I B

TCNTn
(CTC and FPWM)

TOP - 1 TOP BOTTOM BOTTOM + 1

TCNTn
(PC and PFC PWM)

TOP - 1 TOP TOP - 1 TOP -2

TOVn (FPWM)
and ICFn (if used
as TOP)

OCRnx
(Update at TOP)

Old OCRnx Value New OCRnx Value

| /| t m eL 95
2486AA-AVR-02/2013

| ATmega8(L)

16-bit
Timer/Counter
Register
Description

Timer/Counter 1
Control Register A —
TCCR1A

Bit 7 6 5 4 3 2 1 0

I COM1A1 | COM1A0 | COM1B1 | COM1BO | FOC1A FOC1B WGM11 WGM10 I TCCR1A
Read/Write R/W R/W R/W R/W w w R/W R/W
Initial Value 0 0 0 0 0 0 0 0

* Bit 7:6 —- COM1A1:0: Compare Output Mode for channel A
e Bit 5:4 - COM1B1:0: Compare Output Mode for channel B

The COM1A1:0 and COM1B1:0 control the Output Compare Pins (OC1A and OC1B respec-
tively) behavior. If one or both of the COM1A1:0 bits are written to one, the OC1A output
overrides the normal port functionality of the 1/O pin it is connected to. If one or both of the
COM1B1:0 bit are written to one, the OC1B output overrides the normal port functionality of the
I/0O pin it is connected to. However, note that the Data Direction Register (DDR) bit correspond-
ing to the OC1A or OC1B pin must be set in order to enable the output driver.

When the OC1A or OC1B is connected to the pin, the function of the COM1x1:0 bits is depen-
dent of the WGM13:0 bits setting. Table 36 shows the COM1x1:0 bit functionality when the
WGM13:0 bits are set to a normal or a CTC mode (non-PWM).

Table 36. Compare Output Mode, Non-PWM

COM1A1/ COM1A0/
COM1B1 COM1B0 | Description
0 0 Normal port operation, OC1A/OC1B disconnected.
0 1 Toggle OC1A/OC1B on Compare Match
1 0 Clear OC1A/OC1B on Compare Match (Set output to low level)
1 1 Set OC1A/OC1B on Compare Match (Set output to high level)

Table 37 shows the COM1x1:0 bit functionality when the WGM13:0 bits are set to the fast PWM

mode.

Table 37. Compare Output Mode, Fast PWM(")

COM1A1/ COM1A0/
COM1B1 COM1B0 | Description

0 0 Normal port operation, OC1A/OC1B disconnected.

0 1 WGM13:0 = 15: Toggle OC1A on Compare Match, OC1B
disconnected (normal port operation). For all other WGM1
settings, normal port operation, OC1A/OC1B disconnected.

1 0 Clear OC1A/OC1B on Compare Match, set OC1A/OC1B at
BOTTOM, (non-inverting mode)

1 1 Set OC1A/OC1B on Compare Match, clear OC1A/OC1B at
BOTTOM, (inverting mode)

Note: 1. A special case occurs when OCR1A/OCR1B equals TOP and COM1A1/COM1B1 is set. In

this case the Compare Match is ignored, but the set or clear is done at BOTTOM. See “Fast
PWM Mode” on page 88 for more details

| /ltmeL

2486AA-AVR-02/2013

96

| ATmega8(L)

Table 38 shows the COM1x1:0 bit functionality when the WGM13:0 bits are set to the phase cor-
rect or the phase and frequency correct, PWM mode.

Table 38. Compare Output Mode, Phase Correct and Phase and Frequency Correct PWM("

COM1A1/ | COM1A0/
COM1iB1 COM1B0 | Description

0 0 Normal port operation, OC1A/OC1B disconnected.

0 1 WGM13:0 = 9 or 14: Toggle OC1A on Compare Match, OC1B
disconnected (normal port operation). For all other WGM1
settings, normal port operation, OC1A/OC1B disconnected.

1 0 Clear OC1A/OC1B on Compare Match when up-counting. Set
OC1A/OC1B on Compare Match when downcounting.

1 1 Set OC1A/OC1B on Compare Match when up-counting. Clear
OC1A/OC1B on Compare Match when downcounting.

Note: 1. A special case occurs when OCR1A/OCR1B equals TOP and COM1A1/COM1B1 is set. See

“Phase Correct PWM Mode” on page 90 for more details
e Bit 3 - FOC1A: Force Output Compare for channel A
e Bit 2 - FOC1B: Force Output Compare for channel B

The FOC1A/FOC1B bits are only active when the WGM13:0 bits specifies a non-PWM mode.
However, for ensuring compatibility with future devices, these bits must be set to zero when
TCCR1A is written when operating in a PWM mode. When writing a logical one to the
FOC1A/FOC1B bit, an immediate Compare Match is forced on the waveform generation unit.
The OC1A/OC1B output is changed according to its COM1x1:0 bits setting. Note that the
FOC1A/FOC1B bits are implemented as strobes. Therefore it is the value present in the
COM1x1:0 bits that determine the effect of the forced compare.

A FOC1A/FOC1B strobe will not generate any interrupt nor will it clear the timer in Clear Timer
on Compare Match (CTC) mode using OCR1A as TOP.

The FOC1A/FOC1B bits are always read as zero.

e Bit 1:0 - WGM11:0: Waveform Generation Mode

Combined with the WGM13:2 bits found in the TCCR1B Register, these bits control the counting
sequence of the counter, the source for maximum (TOP) counter value, and what type of wave-

form generation to be used, see Table 39. Modes of operation supported by the Timer/Counter
unit are: Normal mode (counter), Clear Timer on Compare Match (CTC) mode, and three types

of Pulse Width Modulation (PWM) modes (see “Modes of Operation” on page 87).

Table 39. Waveform Generation Mode Bit Description

WGM12 | WGM11 WGM10 | Timer/Counter Mode of Update of | TOV1 Flag
Mode | WGM13 | (CTC1) | (PWM11) | (PWM10) | Operation'” TOP OCR1Xx Set on
0 0 0 0 0 Normal OXFFFF | Immediate | MAX
1 0 0 0 1 PWM, Phase Correct, 8-bit OxO0FF | TOP BOTTOM
2 0 0 1 0 PWM, Phase Correct, 9-bit Ox01FF | TOP BOTTOM
3 0 0 1 1 PWM, Phase Correct, 10-bit O0x03FF | TOP BOTTOM
4 0 1 0 0 CTC OCR1A | Immediate | MAX
5 0 1 0 1 Fast PWM, 8-bit 0x00FF | BOTTOM TOP
6 0 1 1 0 Fast PWM, 9-bit 0x01FF | BOTTOM TOP
| AtmeL 97

2486AA-AVR-02/2013

| ATmega8(L)

Table 39. Waveform Generation Mode Bit Description (Continued)

WGM12 | WGM11 WGM10 | Timer/Counter Mode of Update of | TOV1 Flag
Mode | WGM13 | (CTC1) | (PWM11) | (PWM10) | Operation") TOP OCR1x Set on

7 0 1 1 1 Fast PWM, 10-bit 0x03FF | BOTTOM TOP

8 1 0 0 0 PWM, Phase and Frequency Correct | ICR1 BOTTOM BOTTOM
9 1 0 0 1 PWM, Phase and Frequency Correct | OCR1A | BOTTOM BOTTOM
10 1 0 1 0 PWM, Phase Correct ICR1 TOP BOTTOM
11 1 0 1 1 PWM, Phase Correct OCR1A | TOP BOTTOM
12 1 1 0 0 CTC ICR1 Immediate | MAX

13 1 1 0 1 (Reserved) - - -

14 1 1 1 0 Fast PWM ICR1 BOTTOM TOP

15 1 1 1 1 Fast PWM OCR1A | BOTTOM TOP

Note: 1. The CTC1 and PWM11:0 bit definition names are obsolete. Use the WGM12:0 definitions. However, the functionality and

location of these bits are compatible with previous versions of the timer

Timer/Counter 1

Control Register B — Bit 7 6 5 4 3 2 1 0
TCCR1 B I ICNC1 ICES1 - WGM13 WGM12 Cs12 Ccs11 CSs10 I TCCR1B
Read/Write R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7-ICNC1: Input Capture Noise Canceler
Setting this bit (to one) activates the Input Capture Noise Canceler. When the noise canceler is
activated, the input from the Input Capture Pin (ICP1) is filtered. The filter function requires four
successive equal valued samples of the ICP1 pin for changing its output. The Input Capture is
therefore delayed by four Oscillator cycles when the noise canceler is enabled.
e Bit 6 — ICES1: Input Capture Edge Select
This bit selects which edge on the Input Capture Pin (ICP1) that is used to trigger a capture
event. When the ICES1 bit is written to zero, a falling (negative) edge is used as trigger, and
when the ICES1 bit is written to one, a rising (positive) edge will trigger the capture.
When a capture is triggered according to the ICES1 setting, the counter value is copied into the
Input Capture Register (ICR1). The event will also set the Input Capture Flag (ICF1), and this
can be used to cause an Input Capture Interrupt, if this interrupt is enabled.
When the ICR1 is used as TOP value (see description of the WGM13:0 bits located in the
TCCR1A and the TCCR1B Register), the ICP1 is disconnected and consequently the Input Cap-
ture function is disabled.
¢ Bit 5 — Reserved Bit
This bit is reserved for future use. For ensuring compatibility with future devices, this bit must be
written to zero when TCCR1B is written.
¢ Bit 4:3 - WGM13:2: Waveform Generation Mode
See TCCR1A Register description.
¢ Bit 2:0 - CS12:0: Clock Select
The three clock select bits select the clock source to be used by the Timer/Counter, see Figure
41 on page 94 and Figure 42 on page 94.

| Atme[98

2486AA-AVR-02/2013

| ATmega8(L)

Table 40. Clock Select Bit Description
CSs12 CS11 CS10 | Description

0 0 0 No clock source. (Timer/Counter stopped)
0 0 1 clk,o/1 (No prescaling)

0 1 0 clk,,o/8 (From prescaler)

0 1 1 clk,o/64 (From prescaler)

1 0 0 clk,/256 (From prescaler)

1 0 1 clk,o/1024 (From prescaler)

1 1 0 External clock source on T1 pin. Clock on falling edge
1 1 1 External clock source on T1 pin. Clock on rising edge

If external pin modes are used for the Timer/Counter1, transitions on the T1 pin will clock the
counter even if the pin is configured as an output. This feature allows software control of the

counting.
Timer/Counter 1 —
TCNT1H and TCNT1L L 7 8 5 4 3 2 ! 0
TCNT1[15:8] TCNT1H
TCNTA1[7:0] TCNT1L
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

The two Timer/Counter 1/O locations (TCNT1H and TCNT1L, combined TCNT1) give direct
access, both for read and for write operations, to the Timer/Counter unit 16-bit counter. To
ensure that both the high and Low bytes are read and written simultaneously when the CPU
accesses these registers, the access is performed using an 8-bit temporary High byte Register
(TEMP). This temporary register is shared by all the other 16-bit registers. See “Accessing 16-bit
Registers” on page 77.

Modifying the counter (TCNT1) while the counter is running introduces a risk of missing a Com-
pare Match between TCNT1 and one of the OCR1x Registers.

Writing to the TCNT1 Register blocks (removes) the Compare Match on the following timer clock
for all compare units.

Output Compare

Register 1A- Bit 7 6 5 4 3 2 1 0
OCR1AH and OCR1AL OCRIAL1S:8] OCR1AH
OCR1A[7:0] OCR1AL
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
Output Compare
Register 1B - Bit 7 6 5 4 3 2 1 0
OCR1BH and OCR1BL OCR1B[15:8] OCR1BH
OCR1B[7:0] OCR1BL
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
|
Atmel 99

2486AA-AVR-02/2013

| ATmega8(L)

The Output Compare Registers contain a 16-bit value that is continuously compared with the
counter value (TCNT1). A match can be used to generate an Output Compare Interrupt, or to
generate a waveform output on the OC1x pin.

The Output Compare Registers are 16-bit in size. To ensure that both the high and Low bytes
are written simultaneously when the CPU writes to these registers, the access is performed
using an 8-bit temporary High byte Register (TEMP). This temporary register is shared by all the
other 16-bit registers. See “Accessing 16-bit Registers” on page 77.

Input Capture Register

1 -ICR1H and ICR1L Bit 7 6 5 4 3 2 1 0
ICR1[15:8] ICR1H
ICR1[7:0] ICR1L
Read/Write RIW RIW RIW RIW RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0

The Input Capture is updated with the counter (TCNT1) value each time an event occurs on the
ICP1 pin (or optionally on the Analog Comparator Output for Timer/Counter1). The Input Cap-
ture can be used for defining the counter TOP value.

The Input Capture Register is 16-bit in size. To ensure that both the high and Low bytes are read
simultaneously when the CPU accesses these registers, the access is performed using an 8-bit
temporary High byte Register (TEMP). This temporary register is shared by all the other 16-bit
registers. See “Accessing 16-bit Registers” on page 77.

Timer/Counter

Interrupt Mask Bit U 6 5 4 3 2 ! 0

Register _ TIMSK“) I OCIE2 TOIE2 TICIE1 OCIE1A OCIE1B TOIE1 - TOIEO I TIMSK
Read/Write R/W R/W R/W R/W R/W R/W R R/W
Initial Value 0 0 0 0 0 0 0 0

Note: 1. This register contains interrupt control bits for several Timer/Counters, but only Timer1 bits are
described in this section. The remaining bits are described in their respective timer sections

e Bit 5 - TICIE1: Timer/Counter1, Input Capture Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counter1 Input Capture Interrupt is enabled. The corresponding Interrupt
Vector (see “Interrupts” on page 46) is executed when the ICF1 Flag, located in TIFR, is set.

e Bit 4 — OCIE1A: Timer/Counter1, Output Compare A Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counter1 Output Compare A match interrupt is enabled. The corresponding
Interrupt Vector (see “Interrupts” on page 46) is executed when the OCF1A Flag, located in
TIFR, is set.

e Bit 3 — OCIE1B: Timer/Counteri, Output Compare B Match Interrupt Enable
When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counter1 Output Compare B match interrupt is enabled. The corresponding

Interrupt Vector (see “Interrupts” on page 46) is executed when the OCF1B Flag, located in
TIFR, is set.

e Bit 2 - TOIE1: Timer/Counter1, Overflow Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counter1 Overflow Interrupt is enabled. The corresponding Interrupt Vector
(see “Interrupts” on page 46) is executed when the TOV1 Flag, located in TIFR, is set.

| AtmeL 100
2486AA-AVR-02/2013

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII-IIII-IIIIIIIIIIII\TWTHBQFBB(L)

Timer/Counter
Interrupt Flag Register
- TIFR®

Bit 7 6 5 4 3 2 1 0
| ocr2 | ToOV2 ICF1 | OCF1A | OCF1B | TOV1 - TOV0o | TIFR

Read/Write RIW RIW RIW RIW RIW RIW R RIW

Initial Value 0 0 0 0 0 0 0 0

Note: 1. This register contains flag bits for several Timer/Counters, but only Timer1 bits are described
in this section. The remaining bits are described in their respective timer sections

e Bit 5 - ICF1: Timer/Counter1, Input Capture Flag
This flag is set when a capture event occurs on the ICP1 pin. When the Input Capture Register

(ICR1) is set by the WGM13:0 to be used as the TOP value, the ICF1 Flag is set when the coun-
ter reaches the TOP value.

ICF1 is automatically cleared when the Input Capture Interrupt Vector is executed. Alternatively,
ICF1 can be cleared by writing a logic one to its bit location.
e Bit4 — OCF1A: Timer/Counter1, Output Compare A Match Flag

This flag is set in the timer clock cycle after the counter (TCNT1) value matches the Output
Compare Register A (OCR1A).

Note that a Forced Output Compare (FOC1A) strobe will not set the OCF1A Flag.

OCF1A is automatically cleared when the Output Compare Match A Interrupt Vector is exe-
cuted. Alternatively, OCF1A can be cleared by writing a logic one to its bit location.
e Bit 3 - OCF1B: Timer/Counter1, Output Compare B Match Flag

This flag is set in the timer clock cycle after the counter (TCNT1) value matches the Output
Compare Register B (OCR1B).

Note that a Forced Output Compare (FOC1B) strobe will not set the OCF1B Flag.

OCF1B is automatically cleared when the Output Compare Match B Interrupt Vector is exe-
cuted. Alternatively, OCF1B can be cleared by writing a logic one to its bit location.

e Bit 2 - TOV1: Timer/Counter1, Overflow Flag
The setting of this flag is dependent of the WGM13:0 bits setting. In normal and CTC modes, the

TOV1 Flag is set when the timer overflows. Refer to Table 39 on page 97 for the TOV1 Flag
behavior when using another WGM13:0 bit setting.

TOV1 is automatically cleared when the Timer/Counter1 Overflow Interrupt Vector is executed.
Alternatively, TOV1 can be cleared by writing a logic one to its bit location.

| AtmeL 101

2486AA-AVR-02/2013

| ATmega8(L)

8-bit

Timer/Counter2
with PWM and

Asynchronous
Operation

Overview

Timer/Counter2 is a general purpose, single channel, 8-bit Timer/Counter module. The main

features are:

¢ Single Channel Counter

Clear Timer on Compare Match (Auto Reload)

Glitch-free, phase Correct Pulse Width Modulator (PWM)
Frequency Generator

10-bit Clock Prescaler

Overflow and Compare Match Interrupt Sources (TOV2 and OCF2)

Allows Clocking from External 32kHz Watch Crystal Independent of the I/O Clock

A simplified block diagram of the 8-bit Timer/Counter is shown in Figure 45. For the actual place-
ment of I1/0 pins, refer to “Pin Configurations” on page 2. CPU accessible 1/O Registers,
including 1/O bits and I/O pins, are shown in bold. The device-specific I/O Register and bit loca-
tions are listed in the “8-bit Timer/Counter Register Description” on page 114.

Figure 45. 8-bit Timer/Counter Block Diagram

A
¢ > TCCRn

count

__ TOVn

clear " (Int. Req.)
Control Logic
direction clky,
L y l¢—| TOSC1
BOTTOM TOP T/C
Prescaler Oscillator
vy 4 > —»| TOSC2
Timer/Counter A A
TCNTn
[=0] [= oxFF|
oCn clkyo
rum. Req.)
$ - Waveforlm »| ocn
Generation
<->| OCRn
wn
2
m
<
=
<
(|
— clk,,
Synchronized Status Flags
Synchronization Unit
¢ — clk,gy,
Status Flags 4
e ASSRn
asynchronous Mode
Select (ASn)
V< >

| /ltmeL

2486AA-AVR-02/2013

102

| ATmega8(L)

Registers

Definitions

Timer/Counter
Clock Sources

The Timer/Counter (TCNT2) and Output Compare Register (OCR2) are 8-bit registers. Interrupt
request (shorten as Int.Req.) signals are all visible in the Timer Interrupt Flag Register (TIFR).
All interrupts are individually masked with the Timer Interrupt Mask Register (TIMSK). TIFR and
TIMSK are not shown in the figure since these registers are shared by other timer units.

The Timer/Counter can be clocked internally, via the prescaler, or asynchronously clocked from
the TOSC1/2 pins, as detailed later in this section. The asynchronous operation is controlled by
the Asynchronous Status Register (ASSR). The Clock Select logic block controls which clock
source the Timer/Counter uses to increment (or decrement) its value. The Timer/Counter is inac-
tive when no clock source is selected. The output from the clock select logic is referred to as the
timer clock (clkrs).

The double buffered Output Compare Register (OCR2) is compared with the Timer/Counter
value at all times. The result of the compare can be used by the waveform generator to generate
a PWM or variable frequency output on the Output Compare Pin (OC2). For details, see “Output
Compare Unit” on page 105. The Compare Match event will also set the Compare Flag (OCF2)
which can be used to generate an Output Compare interrupt request.

Many register and bit references in this document are written in general form. A lower case “n”
replaces the Timer/Counter number, in this case 2. However, when using the register or bit
defines in a program, the precise form must be used (that is, TCNT2 for accessing
Timer/Counter2 counter value and so on).

The definitions in Table 41 are also used extensively throughout the document.
Table 41. Definitions
BOTTOM The counter reaches the BOTTOM when it becomes zero (0x00).

MAX The counter reaches its MAXimum when it becomes OxFF (decimal 255).

TOP The counter reaches the TOP when it becomes equal to the highest value in the
count sequence. The TOP value can be assigned to be the fixed value OxFF
(MAX) or the value stored in the OCR2 Register. The assignment is dependent
on the mode of operation.

The Timer/Counter can be clocked by an internal synchronous or an external asynchronous
clock source. The clock source clky, is by default equal to the MCU clock, clk,,o. When the AS2
bit in the ASSR Register is written to logic one, the clock source is taken from the Timer/Counter
Oscillator connected to TOSC1 and TOSC2. For details on asynchronous operation, see “Asyn-
chronous Status Register — ASSR” on page 117. For details on clock sources and prescaler, see
“Timer/Counter Prescaler” on page 120.

| AtmeL 103

2486AA-AVR-02/2013

ATmega8(L)

Counter Unit The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit. Figure
46 shows a block diagram of the counter and its surrounding environment.

Figure 46. Counter Unit Block Diagram

TOVn

DATA BUS > it Req)
i l¢—| TOSC1
count
-t | ok T/C
clear .
TCNTn Control Logic [0 Prescaler Oscillator
direction
Rl —» TOSC2

BOTTOMT T TOP

Signal description (internal signals):

ClkI/O

count Increment or decrement TCNT2 by 1

direction Selects between increment and decrement

clear Clear TCNT2 (set all bits to zero)
clky, Timer/Counter clock
TOP Signalizes that TCNT2 has reached maximum value

BOTTOM Signalizes that TCNT2 has reached minimum value (zero)

Depending on the mode of operation used, the counter is cleared, incremented, or decremented
at each timer clock (clky,). clkr, can be generated from an external or internal clock source,
selected by the clock select bits (CS22:0). When no clock source is selected (CS22:0 = 0) the
timer is stopped. However, the TCNT2 value can be accessed by the CPU, regardless of
whether clky, is present or not. A CPU write overrides (has priority over) all counter clear or
count operations.

The counting sequence is determined by the setting of the WGM21 and WGM20 bits located in
the Timer/Counter Control Register (TCCR2). There are close connections between how the
counter behaves (counts) and how waveforms are generated on the Output Compare Output
OC2. For more details about advanced counting sequences and waveform generation, see
“Modes of Operation” on page 108.

The Timer/Counter Overflow (TOV2) Flag is set according to the mode of operation selected by
the WGM21:0 bits. TOV2 can be used for generating a CPU interrupt.

| AtmeL 104

2486AA-AVR-02/2013

| ATmega8(L)

Output Compare The 8-bit comparator continuously compares TCNT2 with the Output Compare Register

Unit (OCR2). Whenever TCNT2 equals OCR2, the comparator signals a match. A match will set the
Output Compare Flag (OCF2) at the next timer clock cycle. If enabled (OCIE2 = 1), the Output
Compare Flag generates an Output Compare interrupt. The OCF2 Flag is automatically cleared
when the interrupt is executed. Alternatively, the OCF2 Flag can be cleared by software by writ-
ing a logical one to its I/O bit location. The waveform generator uses the match signal to
generate an output according to operating mode set by the WGM21:0 bits and Compare Output
mode (COM21:0) bits. The max and bottom signals are used by the waveform generator for han-
dling the special cases of the extreme values in some modes of operation (see “Modes of
Operation” on page 108).

Figure 47 shows a block diagram of the Output Compare unit.

Figure 47. Output Compare Unit, Block Diagram

- DATA BUS >

OCRn TCNTn

| = (8-bit Comparator) |

OCFn (Int. Req.)

TOP >

BOTTOM

—> Waveform Generator »| oCxy

1]

WGMn1:0 COMn1:0

FOCn S

The OCR2 Register is double buffered when using any of the Pulse Width Modulation (PWM)
modes. For the normal and Clear Timer on Compare (CTC) modes of operation, the double buff-
ering is disabled. The double buffering synchronizes the update of the OCR2 Compare Register
to either top or bottom of the counting sequence. The synchronization prevents the occurrence
of odd-length, non-symmetrical PWM pulses, thereby making the output glitch-free.

The OCR2 Register access may seem complex, but this is not case. When the double buffering
is enabled, the CPU has access to the OCR2 Buffer Register, and if double buffering is disabled
the CPU will access the OCR2 directly.

| AtmeL 105
2486AA-AVR-02/2013

| ATmega8(L)

Force Output
Compare

Compare Match
Blocking by TCNT2
Write

Using the Output
Compare Unit

In non-PWM Waveform Generation modes, the match output of the comparator can be forced by
writing a one to the Force Output Compare (FOC2) bit. Forcing Compare Match will not set the
OCF2 Flag or reload/clear the timer, but the OC2 pin will be updated as if a real Compare Match
had occurred (the COM21:0 bits settings define whether the OC2 pin is set, cleared or toggled).

All CPU write operations to the TCNT2 Register will block any Compare Match that occurs in the
next timer clock cycle, even when the timer is stopped. This feature allows OCR2 to be initialized
to the same value as TCNT2 without triggering an interrupt when the Timer/Counter clock is
enabled.

Since writing TCNT2 in any mode of operation will block all compare matches for one timer clock
cycle, there are risks involved when changing TCNT2 when using the Output Compare channel,
independently of whether the Timer/Counter is running or not. If the value written to TCNT2
equals the OCR2 value, the Compare Match will be missed, resulting in incorrect waveform gen-
eration. Similarly, do not write the TCNT2 value equal to BOTTOM when the counter is
downcounting.

The setup of the OC2 should be performed before setting the Data Direction Register for the port
pin to output. The easiest way of setting the OC2 value is to use the Force Output Compare
(FOC2) strobe bit in Normal mode. The OC2 Register keeps its value even when changing
between waveform generation modes.

Be aware that the COM21:0 bits are not double buffered together with the compare value.
Changing the COM21:0 bits will take effect immediately.

| AtmeL 106

2486AA-AVR-02/2013

| ATmega8(L)

Compare Match
Output Unit

The Compare Output mode (COM21:0) bits have two functions. The waveform generator uses
the COM21:0 bits for defining the Output Compare (OC2) state at the next Compare Match.
Also, the COM21:0 bits control the OC2 pin output source. Figure 48 shows a simplified sche-
matic of the logic affected by the COM21:0 bit setting. The I/0O Registers, I/O bits, and I/O pins in
the figure are shown in bold. Only the parts of the general I/O Port Control Registers (DDR and
PORT) that are affected by the COM21:0 bits are shown. When referring to the OC2 state, the
reference is for the internal OC2 Register, not the OC2 pin.

Figure 48. Compare Match Output Unit, Schematic

COMnN1

COMnO Waveform
FOCn Generator

! OCn
OCn 0 Pin

L /

O

O
|

DATABUS

 / DDR
ol

The general I/O port function is overridden by the Output Compare (OC2) from the waveform
generator if either of the COM21:0 bits are set. However, the OC2 pin direction (input or output)
is still controlled by the Data Direction Register (DDR) for the port pin. The Data Direction Regis-
ter bit for the OC2 pin (DDR_OCZ2) must be set as output before the OC2 value is visible on the
pin. The port override function is independent of the Waveform Generation mode.

The design of the Output Compare Pin logic allows initialization of the OC2 state before the out-
put is enabled. Note that some COM21:0 bit settings are reserved for certain modes of
operation. See “8-bit Timer/Counter Register Description” on page 114.

| AtmeL 107

2486AA-AVR-02/2013

| ATmega8(L)

Compare Output Mode The Waveform Generator uses the COM21:0 bits differently in normal, CTC, and PWM modes.

and Waveform
Generation

Modes of
Operation

Normal Mode

For all modes, setting the COM21:0 = 0 tells the waveform generator that no action on the OC2
Register is to be performed on the next Compare Match. For compare output actions in the non-
PWM modes refer to Table 43 on page 115. For fast PWM mode, refer to Table 44 on page 115,
and for phase correct PWM refer to Table 45 on page 116.

A change of the COM21:0 bits state will have effect at the first Compare Match after the bits are
written. For non-PWM modes, the action can be forced to have immediate effect by using the
FOC2 strobe bits.

The mode of operation (that is, the behavior of the Timer/Counter and the Output Compare pins)
is defined by the combination of the Waveform Generation mode (WGM21:0) and Compare Out-
put mode (COM21:0) bits. The Compare Output mode bits do not affect the counting sequence,
while the Waveform Generation mode bits do. The COM21:0 bits control whether the PWM out-
put generated should be inverted or not (inverted or non-inverted PWM). For non-PWM modes
the COM21:0 bits control whether the output should be set, cleared, or toggled at a Compare
Match (see “Compare Match Output Unit” on page 107).

For detailed timing information refer to “Timer/Counter Timing Diagrams” on page 112.

The simplest mode of operation is the Normal mode (WGM21:0 = 0). In this mode the counting
direction is always up (incrementing), and no counter clear is performed. The counter simply
overruns when it passes its maximum 8-bit value (TOP = 0xFF) and then restarts from the bot-
tom (0x00). In normal operation the Timer/Counter Overflow Flag (TOV2) will be set in the same
timer clock cycle as the TCNT2 becomes zero. The TOV2 Flag in this case behaves like a ninth
bit, except that it is only set, not cleared. However, combined with the timer overflow interrupt
that automatically clears the TOV2 Flag, the timer resolution can be increased by software.
There are no special cases to consider in the Normal mode, a new counter value can be written
anytime.

The Output Compare unit can be used to generate interrupts at some given time. Using the Out-
put Compare to generate waveforms in Normal mode is not recommended, since this will
occupy too much of the CPU time.

| AtmeL 108

2486AA-AVR-02/2013

| ATmega8(L)

Clear Timer on
Compare Match (CTC)
Mode

In Clear Timer on Compare or CTC mode (WGM21:0 = 2), the OCR2 Register is used to manip-
ulate the counter resolution. In CTC mode the counter is cleared to zero when the counter value
(TCNT2) matches the OCR2. The OCR2 defines the top value for the counter, hence also its
resolution. This mode allows greater control of the Compare Match output frequency. It also sim-
plifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Figure 49. The counter value (TCNT2)
increases until a Compare Match occurs between TCNT2 and OCR2, and then counter (TCNT2)
is cleared.

Figure 49. CTC Mode, Timing Diagram

OCn Interrupt Flag Set

TCNTn

OoCn ! !
(Toggle)

Period T I

An interrupt can be generated each time the counter value reaches the TOP value by using the
OCF2 Flag. If the interrupt is enabled, the interrupt handler routine can be used for updating the
TOP value. However, changing the TOP to a value close to BOTTOM when the counter is run-
ning with none or a low prescaler value must be done with care since the CTC mode does not
have the double buffering feature. If the new value written to OCR2 is lower than the current
value of TCNT2, the counter will miss the Compare Match. The counter will then have to count to
its maximum value (OxFF) and wrap around starting at 0x00 before the Compare Match can
occur.

(COMn1:0 = 1)

For generating a waveform output in CTC mode, the OC2 output can be set to toggle its logical
level on each Compare Match by setting the Compare Output mode bits to toggle mode
(COM21:0 = 1). The OC2 value will not be visible on the port pin unless the data direction for the
pin is set to output. The waveform generated will have a maximum frequency of foc, = f 1,0/2
when OCR2 is set to zero (0x00). The waveform frequency is defined by the following equation:

P Jei 1o
OCn = 2.N-(1+OCRn)

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

As for the Normal mode of operation, the TOV2 Flag is set in the same timer clock cycle that the
counter counts from MAX to 0x00.

| AtmeL 109

2486AA-AVR-02/2013

| ATmega8(L)

Fast PWM Mode The fast Pulse Width Modulation or fast PWM mode (WGM21:0 = 3) provides a high frequency
PWM waveform generation option. The fast PWM differs from the other PWM option by its sin-
gle-slope operation. The counter counts from BOTTOM to MAX then restarts from BOTTOM. In
non-inverting Compare Output mode, the Output Compare (OC2) is cleared on the Compare
Match between TCNT2 and OCR2, and set at BOTTOM. In inverting Compare Output mode, the
output is set on Compare Match and cleared at BOTTOM. Due to the single-slope operation, the
operating frequency of the fast PWM mode can be twice as high as the phase correct PWM
mode that uses dual-slope operation. This high frequency makes the fast PWM mode well suited
for power regulation, rectification, and DAC applications. High frequency allows physically small
sized external components (coils, capacitors), and therefore reduces total system cost.

In fast PWM mode, the counter is incremented until the counter value matches the MAX value.
The counter is then cleared at the following timer clock cycle. The timing diagram for the fast
PWM mode is shown in Figure 50. The TCNT2 value is in the timing diagram shown as a histo-
gram for illustrating the single-slope operation. The diagram includes non-inverted and inverted
PWM outputs. The small horizontal line marks on the TCNT2 slopes represent compare
matches between OCR2 and TCNT2.

Figure 50. Fast PWM Mode, Timing Diagram

OCRn Interrupt Flag Set

OCRnN Update
and
TOVnN Interrupt Flag Set

TCNTn

v v (COMn1:0=2)

OCn

OCn m ’—U—‘ m (COMN1:0 = 3)
Period F1 a\%z %—3—+—4—+—5—+—6—+—7—4

The Timer/Counter Overflow Flag (TOV2) is set each time the counter reaches MAX. If the inter-
rupt is enabled, the interrupt handler routine can be used for updating the compare value.

In fast PWM mode, the compare unit allows generation of PWM waveforms on the OC2 pin. Set-
ting the COM21:0 bits to 2 will produce a non-inverted PWM and an inverted PWM output can
be generated by setting the COM21:0 to 3 (see Table 44 on page 115). The actual OC2 value
will only be visible on the port pin if the data direction for the port pin is set as output. The PWM
waveform is generated by setting (or clearing) the OC2 Register at the Compare Match between
OCR2 and TCNT2, and clearing (or setting) the OC2 Register at the timer clock cycle the coun-
ter is cleared (changes from MAX to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:
Jeik 1o

benPWM - N- 256
The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

| AtmeL 110
2486AA-AVR-02/2013

| ATmega8(L)

Phase Correct PWM
Mode

The extreme values for the OCR2 Register represent special cases when generating a PWM
waveform output in the fast PWM mode. If the OCR2 is set equal to BOTTOM, the output will be
a narrow spike for each MAX+1 timer clock cycle. Setting the OCR2 equal to MAX will result in a
constantly high or low output (depending on the polarity of the output set by the COM21:0 bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by set-
ting OC2 to toggle its logical level on each Compare Match (COM21:0 = 1). The waveform
generated will have a maximum frequency of f,., = f, ,,0/2 when OCR2 is set to zero. This fea-
ture is similar to the OC2 toggle in CTC mode, except the double buffer feature of the Output
Compare unit is enabled in the fast PWM mode.

The phase correct PWM mode (WGM21:0 = 1) provides a high resolution phase correct PWM
waveform generation option. The phase correct PWM mode is based on a dual-slope operation.
The counter counts repeatedly from BOTTOM to MAX and then from MAX to BOTTOM. In non-
inverting Compare Output mode, the Output Compare (OC2) is cleared on the Compare Match
between TCNT2 and OCR2 while upcounting, and set on the Compare Match while downcount-
ing. In inverting Output Compare mode, the operation is inverted. The dual-slope operation has
lower maximum operation frequency than single slope operation. However, due to the symmet-
ric feature of the dual-slope PWM modes, these modes are preferred for motor control
applications.

The PWM resolution for the phase correct PWM mode is fixed to eight bits. In phase correct
PWM mode the counter is incremented until the counter value matches MAX. When the counter
reaches MAX, it changes the count direction. The TCNT2 value will be equal to MAX for one
timer clock cycle. The timing diagram for the phase correct PWM mode is shown on Figure 51.
The TCNT2 value is in the timing diagram shown as a histogram for illustrating the dual-slope
operation. The diagram includes non-inverted and inverted PWM outputs. The small horizontal
line marks on the TCNT2 slopes represent compare matches between OCR2 and TCNT2.

Figure 51. Phase Correct PWM Mode, Timing Diagram

i i OCn Interrupt Flag Set

OCRn Update

TOVn Interrupt Flag Set

TCNTn

OCn (COMN1:0 = 2)
OCn (COMN1:0 = 3)
Period
| AtmeL 111

2486AA-AVR-02/2013

| ATmega8(L)

Timer/Counter
Timing Diagrams

The Timer/Counter Overflow Flag (TOV2) is set each time the counter reaches BOTTOM. The
Interrupt Flag can be used to generate an interrupt each time the counter reaches the BOTTOM
value.

In phase correct PWM mode, the compare unit allows generation of PWM waveforms on the
OC2 pin. Setting the COM21:0 bits to 2 will produce a non-inverted PWM. An inverted PWM out-
put can be generated by setting the COM21:0 to 3 (see Table 45 on page 116). The actual OC2
value will only be visible on the port pin if the data direction for the port pin is set as output. The
PWM waveform is generated by clearing (or setting) the OC2 Register at the Compare Match
between OCR2 and TCNT2 when the counter increments, and setting (or clearing) the OC2
Register at Compare Match between OCR2 and TCNT2 when the counter decrements. The
PWM frequency for the output when using phase correct PWM can be calculated by the follow-
ing equation:

_ Jewo
Jocnrcrwm = 3 510

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

The extreme values for the OCR2 Register represent special cases when generating a PWM
waveform output in the phase correct PWM mode. If the OCR2 is set equal to BOTTOM, the out-
put will be continuously low and if set equal to MAX the output will be continuously high for non-
inverted PWM mode. For inverted PWM the output will have the opposite logic values.

At the very start of period 2 in Figure 51 on page 111 OCn has a transition from high to low even
though there is no Compare Match. The point of this transition is to guarantee symmetry around
BOTTOM. There are two cases that give a transition without Compare Match:

¢ OCR2A changes its value from MAX, like in Figure 51 on page 111. When the OCR2A value
is MAX the OCn pin value is the same as the result of a down-counting Compare Match. To
ensure symmetry around BOTTOM the OCn value at MAX must correspond to the result of
an up-counting Compare Match

e The timer starts counting from a value higher than the one in OCR2A, and for that reason
misses the Compare Match and hence the OCn change that would have happened on the
way up

The following figures show the Timer/Counter in Synchronous mode, and the timer clock (clky,)
is therefore shown as a clock enable signal. In Asynchronous mode, clk;,o should be replaced by
the Timer/Counter Oscillator clock. The figures include information on when Interrupt Flags are
set. Figure 52 contains timing data for basic Timer/Counter operation. The figure shows the
count sequence close to the MAX value in all modes other than phase correct PWM mode.

Figure 52. Timer/Counter Timing Diagram, no Prescaling

clk,o
clkq,
(clk,o/1)
TCNTn N MAX - 1 MAX BOTTOM BOTTOM + 1
TOVn
I <t mel 112

2486AA-AVR-02/2013

ATmega8(L)

Figure 53 shows the same timing data, but with the prescaler enabled.

Figure 53. Timer/Counter Timing Diagram, with Prescaler (f ,0/8)

o AT AT AT AT
T T F T F

TCNTn MAX -1 MAX BOTTOM BOTTOM + 1

—

TOVn

Figure 54 shows the setting of OCF2 in all modes except CTC mode.

Figure 54. Timer/Counter Timing Diagram, Setting of OCF2, with Prescaler (f ,0/8)

o ||| UUDUULGURIOUUERULUU Iy UOuUEuL
| i i 1

TCNTn OCRn -1 OCRnN OCRn + 1 OCRn + 2
OCRn OCRn Value
OCFn
] /ltmeL 113

2486AA-AVR-02/2013

8-bit
Timer/Counter
Register
Description

Timer/Counter Control
Register - TCCR2

ATmega8(L)

Figure 55 shows the setting of OCF2 and the clearing of TCNT2 in CTC mode.

Figure 55. Timer/Counter Timing Diagram, Clear Timer on Compare Match Mode, with Pres-
caler (fox_10/8)

R R

clkq,

(CIkI/O/S)

TCNTn |

TOP -1 TOP BOTTOM BOTTOM + 1

(CTC) |

OCRn TOP

OCFn
Bit 7 6 5 4 3 2 1 0

I FOC2 WGM20 COM21 COM20 WGM21 CS22 CSs21 CS20 I TCCR2

Read/Write W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7 - FOC2: Force Output Compare

The FOC2 bit is only active when the WGM bits specify a non-PWM mode. However, for ensur-
ing compatibility with future devices, this bit must be set to zero when TCCR2 is written when
operating in PWM mode. When writing a logical one to the FOC2 bit, an immediate Compare
Match is forced on the waveform generation unit. The OC2 output is changed according to its
COM21:0 bits setting. Note that the FOC2 bit is implemented as a strobe. Therefore it is the
value present in the COM21:0 bits that determines the effect of the forced compare.

A FOC2 strobe will not generate any interrupt, nor will it clear the timer in CTC mode using
OCR2 as TOP.

The FOC2 bit is always read as zero.
¢ Bit 6:3 - WGM21:0: Waveform Generation Mode

These bits control the counting sequence of the counter, the source for the maximum (TOP)
counter value, and what type of waveform generation to be used. Modes of operation supported
by the Timer/Counter unit are: Normal mode, Clear Timer on Compare Match (CTC) mode, and
two types of Pulse Width Modulation (PWM) modes. See Table 42 on page 115 and “Modes of
Operation” on page 108.

| /ltmeL 114

2486AA-AVR-02/2013

Table 42. Waveform Generation Mode Bit Description

| ATmega8(L)

WGM21 | WGM20 | Timer/Counter Mode Update of | TOV2 Flag
Mode | (CTC2) | (PWM2) | of Operation") TOP | OCR2 Set
0 0 0 Normal OxFF Immediate | MAX
1 0 1 PWM, Phase Correct OxFF TOP BOTTOM
2 1 0 CTC OCR2 | Immediate | MAX
3 1 1 Fast PWM OxFF | BOTTOM MAX
Note: 1. The CTC2 and PWM2 bit definition names are now obsolete. Use the WGM21:0 definitions.

However, the functionality and location of these bits are compatible with previous versions of
the timer

e Bit 5:4 - COM21:0: Compare Match Output Mode

These bits control the Output Compare Pin (OC2) behavior. If one or both of the COM21:0 bits
are set, the OC2 output overrides the normal port functionality of the I/O pin it is connected to.
However, note that the Data Direction Register (DDR) bit corresponding to OC2 pin must be set
in order to enable the output driver.

When OC2 is connected to the pin, the function of the COM21:0 bits depends on the WGM21:0
bit setting.

Table 43 shows the COM21:0 bit functionality when the WGM21:0 bits are set to a normal or
CTC mode (non-PWM).

Table 43. Compare Output Mode, Non-PWM Mode

COM21 COM20 Description
0 0 Normal port operation, OC2 disconnected
0 1 Toggle OC2 on Compare Match
1 0 Clear OC2 on Compare Match
1 1 Set OC2 on Compare Matich

Table 44 shows the COM21:0 bit functionality when the WGM21:0 bits are set to fast PWM

mode.
Table 44. Compare Output Mode, Fast PWM Mode")
COM21 COM20 Description
0 0 Normal port operation, OC2 disconnected
0 1 Reserved
1 0 Clear OC2 on Compare Match, set OC2 at BOTTOM,
(non-inverting mode)
1 1 Set OC2 on Compare Match, clear OC2 at BOTTOM,
(inverting mode)

Note: 1. A special case occurs when OCR2 equals TOP and COM21 is set. In this case, the Compare
Match is ignored, but the set or clear is done at BOTTOM. See “Fast PWM Mode” on page 110
for more details

| AtmeL 115

2486AA-AVR-02/2013

| ATmega8(L)

Table 45 shows the COM21:0 bit functionality when the WGM21:0 bits are set to phase correct
PWM mode.

Table 45. Compare Output Mode, Phase Correct PWM Mode("
COM21 | COM20 | Description

0 0 Normal port operation, OC2 disconnected

0 1 Reserved

Clear OC2 on Compare Match when up-counting. Set OC2 on Compare

1 0 Match when downcounting

Set OC2 on Compare Match when up-counting. Clear OC2 on Compare

1 1 Match when downcounting

Note: 1. A special case occurs when OCR2 equals TOP and COM21 is set. In this case, the Compare
Match is ignored, but the set or clear is done at TOP. See “Phase Correct PWM Mode” on page
111 for more details

e Bit 2:0 - CS22:0: Clock Select

The three clock select bits select the clock source to be used by the Timer/Counter, see Table

46.
Table 46. Clock Select Bit Description
CS22 CSs21 CS20 Description
0 0 0 No clock source (Timer/Counter stopped)
0 0 1 clkos/(No prescaling)
0 1 0 clkyo5/8 (From prescaler)
0 1 1 clkro5/32 (From prescaler)
1 0 0 clkro5/64 (From prescaler)
1 0 1 clkyog/128 (From prescaler)
1 1 0 clko5/256 (From prescaler)
1 1 1 clkyo5/1024 (From prescaler)
Timer/Counter .
Register —- TCNT2 Bit 7 6 5 4 3 2 ! 0
| TCNT2[7:0] | Tont2
Read/Write RIW RIW RIW RIW RIW R/W RIW RIW
Initial Value 0 0 0 0 0 0 0 0

The Timer/Counter Register gives direct access, both for read and write operations, to the
Timer/Counter unit 8-bit counter. Writing to the TCNT2 Register blocks (removes) the Compare
Match on the following timer clock. Modifying the counter (TCNTZ2) while the counter is running,
introduces a risk of missing a Compare Match between TCNT2 and the OCR2 Register.

Output Compare

Register - OCR2 Bit 7 6 5 4 3 2 1 0
| OCR2[7:0] | ocr2
Read/Write R/W R/W R/W R/W RIW R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

The Output Compare Register contains an 8-bit value that is continuously compared with the
counter value (TCNT2). A match can be used to generate an Output Compare interrupt, or to
generate a waveform output on the OC2 pin.

| AtmeL 116

2486AA-AVR-02/2013

| ATmega8(L)

Asynchronous
Operation of the
Timer/Counter

Asynchronous Status

Register — ASSR Bit 7 6 5 4 3 2 1 0
| = = = AS2 TCN2UB | OCR2UB | TCR2UB | ASSR

Read/Write R R R R RIW R R R

Initial Value 0 0 0 0 0 0 0 0

* Bit 3 — AS2: Asynchronous Timer/Counter2

When AS2 is written to zero, Timer/Counter 2 is clocked from the 1/O clock, clk;,o. When AS2 is
written to one, Timer/Counter 2 is clocked from a crystal Oscillator connected to the Timer Oscil-
lator 1 (TOSC1) pin. When the value of AS2 is changed, the contents of TCNT2, OCR2, and
TCCR2 might be corrupted.

e Bit 2 - TCN2UB: Timer/Counter2 Update Busy

When Timer/Counter2 operates asynchronously and TCNT2 is written, this bit becomes set.
When TCNT2 has been updated from the temporary storage register, this bit is cleared by hard-
ware. A logical zero in this bit indicates that TCNT2 is ready to be updated with a new value.

¢ Bit 1 — OCR2UB: Output Compare Register2 Update Busy

When Timer/Counter2 operates asynchronously and OCR2 is written, this bit becomes set.
When OCR2 has been updated from the temporary storage register, this bit is cleared by hard-
ware. A logical zero in this bit indicates that OCR2 is ready to be updated with a new value.

e Bit 0 — TCR2UB: Timer/Counter Control Register2 Update Busy

When Timer/Counter2 operates asynchronously and TCCR2 is written, this bit becomes set.
When TCCR2 has been updated from the temporary storage register, this bit is cleared by hard-
ware. A logical zero in this bit indicates that TCCR2 is ready to be updated with a new value.

If a write is performed to any of the three Timer/Counter2 Registers while its update busy flag is
set, the updated value might get corrupted and cause an unintentional interrupt to occur.

The mechanisms for reading TCNT2, OCR2, and TCCR2 are different. When reading TCNT2,
the actual timer value is read. When reading OCR2 or TCCR2, the value in the temporary stor-
age register is read.

Asynchronous When Timer/Counter2 operates asynchronously, some considerations must be taken.
O.peration of * Warning: When switching between asynchronous and synchronous clocking of
Timer/Counter2 Timer/Counter2, the Timer Registers TCNT2, OCR2, and TCCR2 might be corrupted. A

safe procedure for switching clock source is:

Disable the Timer/Counter2 interrupts by clearing OCIE2 and TOIE2

Select clock source by setting AS2 as appropriate

Write new values to TCNT2, OCR2, and TCCR2

To switch to asynchronous operation: Wait for TCN2UB, OCR2UB, and TCR2UB
Clear the Timer/Counter2 Interrupt Flags

Enable interrupts, if needed

e The Oscillator is optimized for use with a 32.768kHz watch crystal. Applying an external
clock to the TOSC1 pin may result in incorrect Timer/Counter2 operation. The CPU main
clock frequency must be more than four times the Oscillator frequency

e When writing to one of the registers TCNT2, OCR2, or TCCR2, the value is transferred to a
temporary register, and latched after two positive edges on TOSC1. The user should not

o0~ 0D~

| AtmeL 117
2486AA-AVR-02/2013

| ATmega8(L)

write a new value before the contents of the temporary register have been transferred to its
destination. Each of the three mentioned registers have their individual temporary register,
which means that, for example, writing to TCNT2 does not disturb an OCR2 write in
progress. To detect that a transfer to the destination register has taken place, the
Asynchronous Status Register — ASSR has been implemented

* When entering Power-save mode after having written to TCNT2, OCR2, or TCCR2, the user
must wait until the written register has been updated if Timer/Counter2 is used to wake up
the device. Otherwise, the MCU will enter sleep mode before the changes are effective. This
is particularly important if the Output Compare2 interrupt is used to wake up the device,
since the Output Compare function is disabled during writing to OCR2 or TCNT2. If the write
cycle is not finished, and the MCU enters sleep mode before the OCR2UB bit returns to
zero, the device will never receive a Compare Match interrupt, and the MCU will not wake up

e |f Timer/Counter2 is used to wake the device up from Power-save mode, precautions must
be taken if the user wants to re-enter one of these modes: The interrupt logic needs one
TOSCH1 cycle to be reset. If the time between wake-up and re-entering sleep mode is less
than one TOSC1 cycle, the interrupt will not occur, and the device will fail to wake up. If the
user is in doubt whether the time before re-entering Power-save or Extended Standby mode
is sufficient, the following algorithm can be used to ensure that one TOSC1 cycle has
elapsed:

1. Write a value to TCCR2, TCNT2, or OCR2
2. Wait until the corresponding Update Busy Flag in ASSR returns to zero
3. Enter Power-save or Extended Standby m