

2Ω CMOS ± 5 V/5 V, SPST Switches

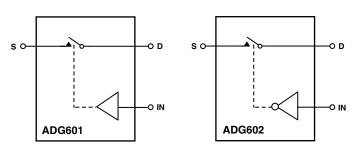
ADG601/ADG602

FEATURES

Low On Resistance 2.5 Ω Max <0.6 Ω On Resistance Flatness Dual ± 2.7 V to ± 5.5 V or Single 2.7 V to 5.5 V Supplies Rail-to-Rail Input Signal Range Tiny 6-Lead SOT-23 and 8-Lead Micro-SOIC Packages Low Power Consumption TTL/CMOS-Compatible Inputs

APPLICATIONS
Automatic Test

Automatic Test Equipment Power Routing Communication Systems Data Acquisition Systems Sample and Hold Systems Avionics Relay Replacement Battery-Powered Systems


GENERAL DESCRIPTION

The ADG601/ADG602 are monolithic CMOS SPST (Single Pole, Single Throw) switches with On Resistance typically less than 2.5 Ω . The Low On Resistance flatness makes the ADG601/ADG602 ideally suited to many applications, particularly those requiring low distortion. These switches are ideal for replacements for mechanical relays because they are more reliable, have lower power requirements, and package size is much smaller.

The ADG601 is a normally open (NO) switch, while the ADG602 is normally closed (NC). Each switch conducts equally well in both directions when ON, with the input signal range extending to the supply rails.

They are available in tiny 6-lead SOT-23 and 8-lead Micro-SOIC packages.

FUNCTIONAL BLOCK DIAGRAMS

SWITCHES SHOWN FOR A LOGIC "1" INPUT

Table I. Truth Table

ADG601 In	ADG602 In	Switch Condition
0	1	OFF
1	0	ON

PRODUCT HIGHLIGHTS

- 1. Low On Resistance (2 Ω typical)
- 2. Dual ± 2.7 V to ± 5.5 V or Single 2.7 V to 5.5 V Supplies
- 3. Tiny 6-lead SOT-23 and 8-lead Micro-SOIC Packages
- 4. Rail-to-Rail Input Signal Range

REV. 0

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781/329-4700 www.analog.com
Fax: 781/326-8703 © Analog Devices, Inc., 2001

ADG601/ADG602-SPECIFICATIONS

DUAL SUPPLY (VDD = 5 V \pm 10%, VSS = -5 V \pm 10%, GND = 0 V, unless otherwise noted.)

	B Version -40°C				
Parameter	25°C	to +85°C	Unit	Test Conditions/Comments	
ANALOG SWITCH					
Analog Signal Range		V_{SS} to V_{DD}	V		
				$V_{DD} = +4.5 \text{ V}, V_{SS} = -4.5 \text{ V}$	
On Resistance (R _{ON})	2		Ω typ	$V_S = \pm 4.5 \text{ V}, I_S = -10 \text{ mA};$	
	2.5	5.5	Ω max	Test Circuit 1	
On-Resistance Flatness (R _{FLAT(ON)})	0.35		Ω typ	$V_S = \pm 3.3 \text{ V}, I_S = -10 \text{ mA}$	
	0.4	0.6	Ω max		
LEAKAGE CURRENTS					
				$V_{DD} = +5.5 \text{ V}, V_{SS} = -5.5 \text{ V}$	
Source OFF Leakage I _S (OFF)	±0.01		nA typ	$V_S = +4.5 \text{ V}/-4.5 \text{ V}, V_D = -4.5 \text{ V}/+4.5 \text{ V};$	
	±0.25	± 1	nA max	Test Circuit 2	
Drain OFF Leakage I _D (OFF)	± 0.01		nA typ	$V_S = +4.5 \text{ V/}-4.5 \text{ V}, V_D = -4.5 \text{ V/}+4.5 \text{ V};$	
	±0.25	± 1	nA max	Test Circuit 2	
Channel ON Leakage I_D , I_S (ON)	±0.01		nA typ	$V_S = V_D = +4.5 \text{ V}, \text{ or } -4.5 \text{ V};$	
	±0.25	±1	nA max	Test Circuit 3	
DIGITAL INPUTS					
Input High Voltage, V _{INH}		2.4		V min	
Input Low Voltage, V _{INL}		0.8		V max	
Input Current					
I _{INL} or I _{INH}	0.005		μA typ	$V_{IN} = V_{INL}$ or V_{INH}	
		± 0.1	μA max		
C _{IN} , Digital Input Capacitance	2		pF typ		
DYNAMIC CHARACTERISTICS ²					
t_{ON}	80		ns typ	$R_L = 300 \Omega, C_L = 35 pF$	
	120	155	ns max	$V_S = 3.3 \text{ V}$; Test Circuit 4	
t _{OFF}	45		ns typ	$R_{L} = 300 \Omega, C_{L} = 35 pF$	
	75	90	ns max	$V_S = 3.3 \text{ V}$; Test Circuit 4	
Charge Injection	250		pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF}; Test Circuit 5}$	
Off Isolation	-60		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; Test Circuit 6	
Bandwidth –3 dB	180		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; Test Circuit 7	
C_{S} (OFF)	50		pF typ	f = 1 MHz	
C_D (OFF)	50		pF typ	f = 1 MHz	
C_D , C_S (ON)	145		pF typ	f = 1 MHz	
POWER REQUIREMENTS					
				$V_{\rm DD}$ = +5.5 V, $V_{\rm SS}$ = -5.5 V	
$ m I_{DD}$	0.001		μA typ	Digital Inputs = 0 V or 5.5 V	
		1.0	μA max		
I_{SS}	0.001		μA typ	Digital Inputs = 0 V or 5.5 V	
		1.0	μA max		

NOTES

Specifications subject to change without notice.

-2- REV. 0

¹Temperature range is as follows: B Version: −40°C to +85°C.

²Guaranteed by design, not subject to production test.

ADG601/ADG602

SINGLE SUPPLY 1 (V $_{DD}$ = 5 V \pm 10%, V $_{SS}$ = 0 V, GND = 0 V, unless otherwise noted.)

	B Version -40°C				
Parameter	25°C	to +85°C	Unit	Test Conditions/Comments	
ANALOG SWITCH					
Analog Signal Range		$0~V~to~V_{DD}$	V		
				$V_{\mathrm{DD}} = 4.5 \mathrm{\ V}$	
On Resistance (R _{ON})	3.5	2	Ω typ	$V_S = 0 \text{ V to } 4.5 \text{ V}, I_S = -10 \text{ mA};$	
On Bosistanas Flatness (B.	5 0.2	8 0.2	Ω max	Test Circuit 1 $V_S = 1.5 \text{ V to } 3.3 \text{ V, } I_S = -10 \text{ mA}$	
On-Resistance Flatness (R _{FLAT(ON)})	0.2	0.25	Ω typ Ω max	v _S = 1.5 v to 5.5 v, i _S = -10 mA	
LEAKAGE CURRENTS					
				$V_{\rm DD} = 5.5 \text{ V}$	
Source OFF Leakage I _S (OFF)	±0.01		nA typ	$V_S = 4.5 \text{ V/1 V}, V_D = 1 \text{ V/4.5 V};$	
D : OFFI 1 I (OFF)	±0.25	±1	nA max	Test Circuit 2	
Drain OFF Leakage I _D (OFF)	± 0.01 ± 0.25	±1	nA typ nA max	$V_S = 4.5 \text{ V/1 V}, V_D = 1 \text{ V/4.5 V};$ Test Circuit 2	
Channel ON Leakage I _D , I _S (ON)	± 0.25 ± 0.01	<u> </u>	nA typ	$V_S = V_D = 4.5 \text{ V, or } 1 \text{ V;}$	
chamier of the Ecurage 15, 15 (of t)	±0.25	±1	nA max	Test Circuit 3	
DIGITAL INPUTS					
Input High Voltage, V _{INH}		2.4	V min		
Input Low Voltage, V _{INL}		0.8	V max		
Input Current					
I_{INL} or I_{INH}	0.005		μA typ	$V_{IN} = V_{INL}$ or V_{INH}	
C. Disital Innut Canaditana	2	± 0.1	μA max		
C _{IN} , Digital Input Capacitance	2		pF typ		
DYNAMIC CHARACTERISTICS ²	110		_	D = 200 O C = 25 F	
t_{ON}	110 220	280	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$ $V_S = 3.3 V$; Test Circuit 4	
t _{OFF}	50	200	ns max ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$	
OFF	80	110	ns max	$V_S = 3.3 \text{ V}$; Test Circuit 4	
Charge Injection	20	110	pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF, Test Circuit 5}$	
Off Isolation	-60		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, Test Circuit 6	
Bandwidth -3 dB	180		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, Test Circuit 7	
$C_{S}(OFF)$	50		pF typ	f = 1 MHz	
C_{D} (OFF)	50		pF typ	f = 1 MHz	
$C_D, C_S (ON)$	145		pF typ	f = 1 MHz	
POWER REQUIREMENTS					
•	0.001			$V_{\rm DD} = 5.5 \text{ V}$	
I_{DD}	0.001	1.0	μA typ	Digital Inputs = 0 V or 5.5 V	
		1.0	μA max		

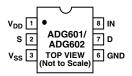
Specifications subject to change without notice.

REV. 0 -3-

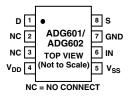
¹Temperature range is as follows: B Version: -40°C to +85°C. ²Guaranteed by design, not subject to production test.

ADG601/ADG602

ABSOLUTE MAXIMUM RATINGS1


$(T_A = 25^{\circ}C \text{ unless otherwise noted})$
V_{DD} to V_{SS}
V _{DD} to GND
V_{SS} to GND +0.3 V to -6.5 V
Analog Inputs ² V_{SS} –0.3 V to V_{DD} +0.3 V
Digital Inputs ² 0.3 V to V_{DD} +0.3 V
or 30 mA, whichever occurs first
Continuous Current, S or D
Peak Current, S or D
(Pulsed at 1 ms, 10% Duty Cycle Max) 200 mA
Operating Temperature Range
Industrial (B Version)40°C to +85°C
Storage Temperature Range65°C to +150°C
Junction Temperature 150°C
Micro-SOIC Package
θ_{JA} Thermal Impedance
θ_{JC} Thermal Impedance
SOT_23 Package
θ_{JA} Thermal Impedance
θ_{JC} Thermal Impedance 91.99°C/W
Lead Temperature, Soldering (10 seconds) 300°C
IR Reflow, Peak Temperature
NOTES

¹Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.


²Overvoltages at IN, S, or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

PIN CONFIGURATIONS

6-Lead Plastic Surface Mount (SOT_23) (RT-6)

8-Lead Small Outline Micro-SOIC (RM-8)

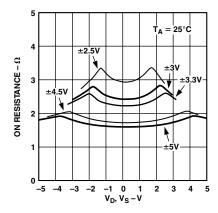
ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option	Branding Information*
ADG601BRT	−40°C to +85°C	Plastic Surface-Mount (SOT_23)	RT-6	STB
ADG601BRM	−40°C to +85°C	Micro Small Outline (Micro-SOIC)	RM-8	STB
ADG602BRT	−40°C to +85°C	Plastic Surface-Mount (SOT_23)	RT-6	SUB
ADG602BRM	−40°C to +85°C	Micro Small Outline (Micro-SOIC)	RM-8	SUB

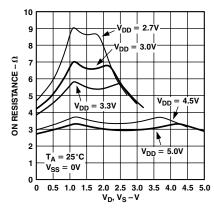
^{*}Branding on SOT_23 and Micro-SOIC packages is limited to three characters due to space constraints.

CAUTION_

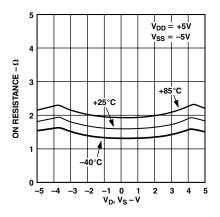
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG601/ADG602 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.



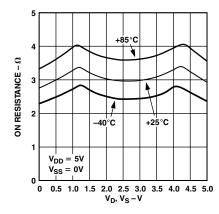
-4- REV. 0

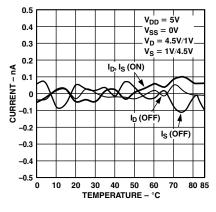

TERMINOLOGY

7.7	Mark Davidina Damas Carada Dakasadal
$V_{ m DD}$	Most Positive Power Supply Potential
V_{SS}	Most Negative Power Supply Potential
I_{DD}	Positive Supply Current
I_{SS}	Negative Supply Current
GND	Ground (0 V) Reference
S	Source Terminal. May be an input or output.
D	Drain Terminal. May be an input or output.
IN	Logic Control Input
$V_{D}(V_{S})$	Analog Voltage on Terminals D, S
R_{ON}	Ohmic Resistance Between D and S
$R_{FLAT(ON)}$	Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured
	over the specified analog signal range.
I_{S} (OFF)	Source Leakage Current with the Switch "OFF"
I_D (OFF)	Drain Leakage Current with the Switch "OFF"
$I_D, I_S (ON)$	Channel Leakage Current with the Switch "ON"
V_{INL}	Maximum Input Voltage for Logic "0"
V_{INH}	Minimum Input Voltage for Logic "1"
$I_{INL}(I_{INH})$	Input Current of the Digital Input
C_{S} (OFF)	"OFF" Switch Source Capacitance. Measured with reference to ground.
C_D (OFF)	"OFF" Switch Drain Capacitance. Measured with reference to ground.
$C_D, C_S(ON)$	"ON" Switch Capacitance. Measured with reference to ground.
C_{IN}	Digital Input Capacitance
t_{ON}	Delay Between Applying the Digital Control Input and the Output Switching On.
t_{OFF}	Delay Between Applying the Digital Control Input and the Output Switching Off.
Charge Injection	A measure of the glitch impulse transferred from the digital input to the analog output during switching.
Off Isolation	A measure of unwanted signal coupling through an "OFF" Switch.
On Response	Frequency Response of the "ON" Switch
Insertion Loss	Loss Due to the ON Resistance of the Switch

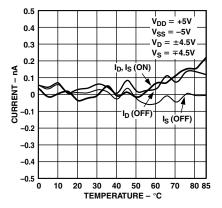

Typical Performance Characteristics

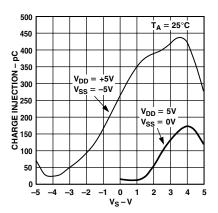
TPC 1. On Resistance vs. $V_D(V_S)$ (Dual Supply)

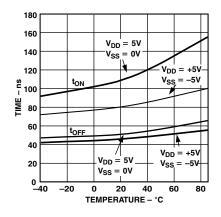

TPC 2. On Resistance vs. $V_D(V_S)$ (Single Supply)

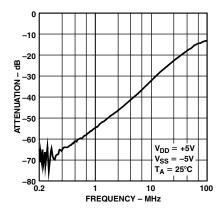

TPC 3. On Resistance vs. $V_D(V_S)$ for Different Temperatures (Dual Supply)

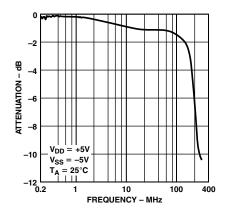
REV. 0 -5-


ADG601/ADG602—Typical Performance Characteristics (continued)


TPC 4. On Resistance vs. $V_D(V_S)$ for Different Temperatures (Single Supply)

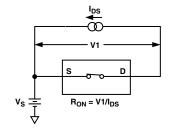

TPC 5. Leakage Currents vs. Temperature (Single Supply)

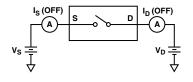

TPC 6. Leakage Currents vs. Temperature (Dual Supply)

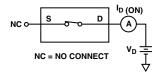

TPC 7. Charge Injection vs. Source Voltage

TPC 8. t_{ON}/t_{OFF} Times vs. Temperature

TPC 9. Off Isolation vs. Frequency

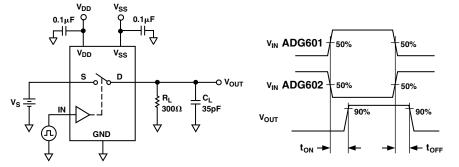


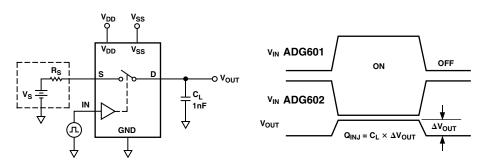

TPC 10. On Response vs. Frequency


-6- REV. 0

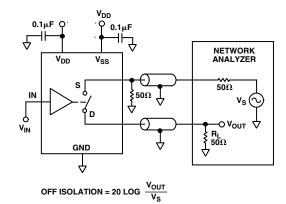
ADG601/ADG602

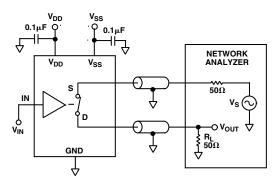
TEST CIRCUITS




Test Circuit 1. On Resistance

Test Circuit 2. Off Leakage

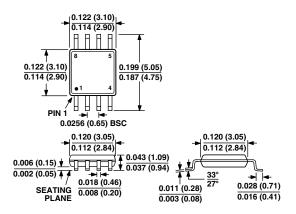

Test Circuit 3. On Leakage


Test Circuit 4. Switching Times

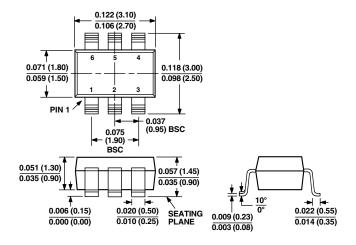
Test Circuit 5. Charge Injection

Test Circuit 6. Off Isolation

 $\label{eq:loss} \text{INSERTION LOSS} = 20 \text{ LOG} \ \frac{\text{V}_{\text{OUT}} \text{ WITH SWITCH}}{\text{V}_{\text{S}} \text{ WITHOUT SWITCH}}$


Test Circuit 7. Bandwidth

REV. 0 -7-


OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

8-Lead Micro-SOIC (RM-8)

6-Lead Plastic Mount SOT-23 (RT-6)

